Page 48 - Read Online
P. 48

Corizzo et al. J Surveill Secur Saf 2020;1:140-50  I  http://dx.doi.org/10.20517/jsss.2020.15                                                 Page 149

                   Intrusion Detection; 2003 Aug 8-10. Berlin: Springer; 2003. pp. 173-91.
               5.   Xie M, Hu J. Evaluating host-based anomaly detection systems: a preliminary analysis of ADFA-LD. 6th International Congress on
                   Image and Signal Processing (CISP). Hangzhou, China; 2013. pp. 1711-6.
               6.   Xie M, Hu J, Yu X, Chang E. Evaluating host-based anomaly detection systems: Application of the frequency-based algorithms to ADFA-
                   LD. International Conference on Network and System Security. Springer, Cham; 2015. pp. 542-9.
               7.   Aghaei E, Serpen G. Ensemble classifier for misuse detection using N-gram feature vectors through operating system call traces. Int J
                   Hybrid Intell Syst 2017;14:141-54.
               8.   Ahmim A, Derdour M, Ferrag MA. An intrusion detection system based on combining probability predictions of a tree of classifiers. Int J
                   Commun Syst 2018;31:e3547.1-17.
               9.   Wunderlich S, Ring M, Landes D, Hotho A. Comparison of system call representations for intrusion detection. International Joint
                   Conference: 12th International Conference on Computational Intelligence in Security for Information Systems (CISIS 2019) and 10th
                   International Conference on EUropean Transnational Education (ICEUTE 2019); 2019. Seville, Spain; 2019. pp. 14-24.
               10.  Hofmeyr SA, Forrest S, Somayaji A. Intrusion detection using sequences of system calls. J Comput Secur 1998;6:151-80.
               11.  Lippmann R. DARPA Intrusion Detection Data Sets. Available from: https://www.ll.mit.edu/r-d/datasets. [Last accessed on 31 Jul 2020]
               12.  Hettich S, Bay S. KDD Cup 1999 Dataset. Available from: http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html. [Last accessed on
                   31 Jul 2020]
               13.  Amiri F, Yousefi MR, Lucas C, Shakery A, Shakery A. Mutual information-based feature selection for intrusion detection systems. J Netw
                   Comput Appl 2011;34:1184-99.
               14.  Brahmi H, Brahmi I, Ben Yahia SB. OMC-IDS: at the cross-roads of OLAP mining and intrusion detection. Advances in Knowledge
                   Discovery and Data Mining:16th Pacific-Asia Conference; 2012 May 29-June 1; Kuala Lumpur, Malaysia: Verlag, Springer; 2012. pp.
                   13-24.
               15.  Apiletti D, Baralis E, Cerquitelli T, D’Elia V. Characterizing network traffic by means of the NetMine framework. Comput Netw
                   2009;53:774-89.
               16.  Bilge L, Balzarotti D, Robertson W, Kirda E, Kruegel C. Disclosure: detecting botnet command and control servers through large-scale
                   netflow analysis leyla. ACSAC ‘12: Proceedings of the 28th Annual Computer Security Applications Conference; 2012 Dec. Orlando,
                   Florida, USA; 2012. pp. 129-38.
               17.  Hu J. The ADFA intrusion detection datasets. Available from: https://www.unsw.adfa.edu.au/australian-centre-for-cyber-security/
                   cybersecurity/ADFA-IDS-Datasets/. [Last accessed on 31 Jul 2020]
               18.  Creech G, Hu J. Generation of a new IDS test dataset: time to retire the KDD collection. 2013 IEEE Wireless Communications and
                   Networking Conference (WCNC); 2002. Shanghai, China; 2013. pp. 4487-92.
               19.  Haider W, Hu J, Slay J, Turnbull BP, Xie Y. Generating realistic intrusion detection system dataset based on fuzzy qualitative modeling. J
                   Netw Comput Appl 2017;87:185-92.
               20.  Li YF, Gao Y, Ayoade G, Tao H, Khan L, et al. Multistream classification for cyber threat data with heterogeneous feature space. The
                   World Wide Web Conference, 2019 May. San Francisco, USA; 2019. pp. 2992-8.
               21.  Liu Z, Japkowicz N, Wang R, Cai Y, Tang D, et al. A statistical pattern based feature extraction method on system call traces for anomaly
                   detection. Inform Software Tech 2020;126:106348.
               22.  Kang DK, Fuller D, Honavar V. Learning classifiers for misuse and anomaly detection using a bag of system calls representation.
                   Proceedings from the 6th Annual IEEE System, Man and Cybernetics Information Assurance Workshop; 2005 June 15th-17th. West
                   Point, NY, USA; 2005. pp. 118-25.
               23.  Corizzo R, Ceci M, Japkowicz N. Anomaly detection and repair for accurate predictions in geo-distributed big data. Big Data Res
                   2019;16:18-35.
               24.  Corizzo R, Ceci M, Zdravevski E, Japkowicz N. Scalable auto-encoders for gravitational waves detection from time series data. Expert
                   Syst Appl 2020;151:113378.
               25.  Mikolov T, Sutskever I, Chen K, Corrado G, Dean J. Distributed representations of words and phrases and their compositionality.
                   NIPS’13: Proceedings of the 26th International Conference on Neural Information Processing Systems; 2013 Dec. Lake Tahoe, USA;
                   2013. pp. 3111-9. arXiv1310.4546 [Preprint]. October 16, 2013. Available from: https://arxiv.org/abs/1310.4546. [Last accessed on 31 Jul
                   2020]
               26.  Globerson A, Gal C, Fernando P, Naftali T. Euclidean embedding of co-occurrence data. J Mach Learn Res 2007;8:2265-95.
               27.  Levy O, Goldberg Y. Neural word embedding as implicit matrix factorization. NIPS’14: Proceedings of the 27th International Conference
                   on Neural Information Processing Systems; 2014 Dec. Montreal, Canada; 2014. pp. 2177-85.
               28.  Lavelli A, Sebastiani F, Zanoli R. Distributional term representations: an experimental comparison. CIKM ‘04: Proceedings of the
                   thirteenth ACM international conference on Information and knowledge management; 2004 Nov. Washington D.C, USA; pp. 615-24.
               29.  Firth JR. A synopsis of linguistic theory, 1930-1955. Studies in Linguistics Analysis. Oxford: Philological Society; 1957. pp. 1-32.
               30.  Mikolov T, Chen K, Corrado G, Dean J. Efficient estimation of word representations in vector space. arXiv 1310.3781 [Preprint]
                   September 7, 2013. Available from: https://arxiv.org/abs/1301.3781. [Last accessed on 31 Jul 2020]
               31.  Jang B, Kim I, Kim JW. Word2vec convolutional neural networks for classification of news articles and tweets. PLoS One
                   2019;14:e0220976.
               32.  Wu C, Gao R, Zhang Y, De Marinis Y. PTPD: predicting therapeutic peptides by deep learning and word2vec. BMC Bioinformatics
                   2019;20:456.
               33.  Chen T, Mao Q, Lv M, Cheng H, Li Y. DroidVecDeep: android malware detection based on word2vec and deep belief network. TIIS
   43   44   45   46   47   48   49   50   51   52   53