Page 148 - Read Online
P. 148
Chong et al. J Mater Inf 2023;3:21 https://dx.doi.org/10.20517/jmi.2023.17 Page 17 of 18
4. Tesfaye F, Sukhomlinov D, Lindberg D, Taskinen P, Akdogan G. Thermal stabilities and properties of equilibrium phases in the Pt-Te-
O system. J Chem Thermodyn 2017;106:47-58. DOI
5. Süss R, Freund D, Völkl R, et al. The creep behaviour of platinum-based γ/γ′ analogues of nickel-based superalloys at 1300 °C. Mat
Sci Eng A 2002;338:133-41. DOI
6. Wenderoth M, Völkl R, Yokokawa T, Yamabe-mitarai Y, Harada H. High temperature strength of Pt-base superalloys with different γ′
volume fractions. Scripta Mater 2006;54:275-9. DOI
7. Kim D, Shang S, Li Z, Gleeson B, Liu Z. Effects of Hf, Y, and Zr on alumina scale growth on NiAlCr and NiAlPt alloys. Oxid Met
2019;92:303-13. DOI
8. Wang H, Liu J, Lei S, et al. Effects of Ta and Y additions on the high temperature oxidation mechanisms of Ni-10Al alloy at 1100 °C.
Vacuum 2023;213:112074. DOI
9. Yang L, Wang J, Yang R, et al. Oxidation behavior of a nanocrystalline coating with low Ta content at high temperature. Corros Sci
2021;180:109182. DOI
10. Odusote J, Cornish L, Chown L. Oxidation kinetics and mechanisms of growth of alumina scale on precipitation-hardened Pt-Al-Cr-
Ru alloys. Corros Sci 2012;63:119-28. DOI
11. Ross A, Shang S, Fang H, et al. Tailoring critical Al concentration to form external Al O scale on Ni-Al alloys by computational
2 3
approach. J Am Ceram Soc 2022;105:7770-7. DOI
12. Golightly FA, Stott FH, Wood GC. The relationship between oxide grain morphology and growth mechanisms for Fe-Cr-Al and Fe-
Cr-Al-Y alloys. J Electrochem Soc 1979;126:1035-42. DOI
13. Messaoudi K, Huntz A, Lesage B. Diffusion and growth mechanism of Al O scales on ferritic Fe-Cr-Al alloys. Mat Sci Eng A
3
2
1998;247:248-62. DOI
14. Mora-garcía A, Mosbacher M, Hastreiter J, Völkl R, Glatzel U, Muñoz-saldaña J. Creep behavior of polycrystalline and single crystal
Ni-based superalloys coated with Ta-containing NiCoCrAlY by high-velocity oxy-fuel spraying. Scripta Mater 2020;178:522-6. DOI
15. Kaplin C, Brochu M. Effects of water vapor on high temperature oxidation of cryomilled NiCoCrAlY coatings in air and low-SO
2
environments. Surf Coat Technol 2011;205:4221-7. DOI
16. Backman L, Opila EJ. Thermodynamic assessment of the group IV, V and VI oxides for the design of oxidation resistant multi-
principal component materials. J Eur Ceram Soc 2019;39:1796-802. DOI
17. Adkison KM, Shang S, Bocklund BJ, Klimm D, Schlom DG, Liu Z. Suitability of binary oxides for molecular-beam epitaxy source
materials: a comprehensive thermodynamic analysis. APL Mater 2020;8:081110. DOI
18. Shang SL, Lin S, Gao MC, Schlom DG, Liu ZK. Predictions and correlation analyses of Ellingham diagrams in binary oxides. arXiv.
[Preprint.] Aug 10, 2023. [Last accessed on 10 Oct 2023] Available from: https://arxiv.org/abs/2308.05837.
19. Thermodynamic properties of inorganic materials·pure substances. Part 1_elements and compounds from AgBr to Ba N . DOI
3 2
20. Kim DE. Thermodynamic modeling and prediction of elastic and thermal expansion properties of Ni-base superalloys: application to
Ni-Al-Pt-Cr-Hf system with gamma and gamma prime phases. Available from: https://etda.libraries.psu.edu/catalog/12437. [Last
accessed on 10 Oct 2023].
21. Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B
Condens Matter 1996;54:11169-86. DOI PubMed
22. Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 1999;59:1758-75. DOI
23. Perdew JP, Zunger A. Self-interaction correction to density-functional approximations for many-electron systems. Phys Rev B
1981;23:5048-79. DOI
24. Perdew JP, Ruzsinszky A, Csonka GI, et al. Erratum: restoring the density-gradient expansion for exchange in solids and surfaces.
Phys Rev Lett 2008;100:136406. DOI
25. Wang Y, Liao M, Bocklund BJ, et al. DFTTK: Density Functional Theory ToolKit for high-throughput lattice dynamics calculations.
Calphad 2021;75:102355. DOI
26. Jain A, Ong SP, Hautier G, et al. Commentary: the materials project: a materials genome approach to accelerating materials
innovation. APL Mater 2013;1:011002. DOI
27. Kirklin S, Saal JE, Meredig B, et al. The Open Quantum Materials Database (OQMD): assessing the accuracy of DFT formation
energies. npj Comput Mater 2015;1:15010. DOI
28. Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett 1996;77:3865-8. DOI PubMed
29. Leitner J, Voňka P, Sedmidubský D, Svoboda P. Application of neumann-kopp rule for the estimation of heat capacity of mixed
oxides. Thermochimica Acta 2010;497:7-13. DOI
30. Kopp H. III. Investigations of the specific heat of solid bodies. Phil Trans R Soc 1865;155:71-202. DOI
31. Andersson JO, Helander T, Höglund L, Shi P, Sundman B. Thermo-Calc & DICTRA, computational tools for materials science.
Calphad 2002;26:273-312. DOI
32. Wagner C. Theoretical analysis of the diffusion processes determining the oxidation rate of alloys. J Electrochem Soc 1952;99:369.
DOI
33. Lu J, Li L, Chen Y, et al. Y-Hf co-doped AlCoCrFeNi high-entropy alloy coating with superior oxidation and spallation resistance at
1100 °C. Corros Sci 2021;182:109267. DOI
34. Wriedt HA. The Al-O (Aluminum-Oxygen) system. Bulletin of Alloy Phase Diagrams 1985;6:548-53. DOI
35. Lee D, Santella M. High temperature oxidation of Ni Al alloy containing Cr, Zr, Mo, and B. Mat Sci Eng A 2004;374:217-23. DOI
3