Page 138 - Read Online
P. 138

Page 18 of 19                         Chen et al. J Mater Inf 2023;3:10  https://dx.doi.org/10.20517/jmi.2023.06

                    thermodynamic and configurational parameters. Met Mater Int 2023;29:38-52.  DOI
               140.      Wang C, Zhong W, Zhao J. Insights on phase formation from thermodynamic calculations and machine learning of 2436
                    experimentally measured high entropy alloys. J Alloys Compd 2022;915:165173.  DOI
               141.      Zeng Y, Man M, Bai K, Zhang Y. Revealing high-fidelity phase selection rules for high entropy alloys: a combined CALPHAD and
                    machine learning study. Mater Des 2021;202:109532.  DOI
               142.      Nassar A, Mullis A. Rapid screening of high-entropy alloys using neural networks and constituent elements. Comput Mater Sci
                    2021;199:110755.  DOI
               143.      Schmidt J, Marques MRG, Botti S, Marques MAL. Recent advances and applications of machine learning in solid-state materials
                    science. NPJ Comput Mater 2019:5.  DOI
               144.      Pei Z, Yin J, Hawk JA, Alman DE, Gao MC. Machine-learning informed prediction of high-entropy solid solution formation: beyond
                    the Hume-Rothery rules. NPJ Comput Mater 2020:6.  DOI
               145.      Qu N, Liu Y, Zhang Y, et al. Machine learning guided phase formation prediction of high entropy alloys. Mater Today Commun
                    2022;32:104146.  DOI
               146.      Bundela AS, Rahul M. Machine learning-enabled framework for the prediction of mechanical properties in new high entropy alloys. J
                    Alloys Compd 2022;908:164578.  DOI
               147.      Yang C, Ren C, Jia Y, Wang G, Li M, Lu W. A machine learning-based alloy design system to facilitate the rational design of high
                    entropy alloys with enhanced hardness. Acta Mater 2022;222:117431.  DOI
               148.      Tao Q, Xu P, Li M, Lu W. Machine learning for perovskite materials design and discovery. NPJ Comput Mater 2021:7.  DOI
               149.      Zhang L, Chen H, Tao X, et al. Machine learning reveals the importance of the formation enthalpy and atom-size difference in
                    forming phases of high entropy alloys. Mater Des 2020;193:108835.  DOI
               150.      Chanda B, Jana PP, Das J. A tool to predict the evolution of phase and Young’s modulus in high entropy alloys using artificial neural
                    network. Comput Mater Sci 2021;197:110619.  DOI
               151.      Jain R, Dewangan SK, Kumar V, Samal S. Artificial neural network approach for microhardness prediction of eight component
                    FeCoNiCrMnVAlNb eutectic high entropy alloys. Mater Sci Eng A 2020;797:140059.  DOI
               152.      Li J, Xie B, Fang Q, Liu B, Liu Y, Liaw PK. High-throughput simulation combined machine learning search for optimum elemental
                    composition in medium entropy alloy. J Mater Sci Technol 2021;68:70-5.  DOI
               153.      Kumar A, Goel S, Sinha N, Bhardwaj A. A review on unbalanced data classification. In: Uddin MS, Jamwal PK, Bansal JC, editors.
                    Proceedings of International Joint Conference on Advances in Computational Intelligence. Singapore: Springer Nature; 2022. pp.
                    197-208.  DOI
               154.      Chawla N V, Bowyer KW, Hall LO, Kegelmeyer WP. SMOTE: synthetic minority over-sampling technique. J Artif Intell Res
                    2002;16:321-57.  DOI
               155.      Tomek I. Tomek link: two modifications of CNN. IEEE Trans Syst Man Cybern 1976;SMC-6:769-772.  DOI
               156.      Lin KB, Weng W, Lai RK, Lu P. Imbalance data classification algorithm based on SVM and clustering function. Proc 9th Int Conf
                    Comput Sci Educ ICCCSE 2014 2014:544-8.  DOI
               157.      Moreno-Torres JG, Herrera F. A preliminary study on overlapping and data fracture in imbalanced domains by means of genetic
                    programming-based feature extraction. Proc 2010 10th Int Conf Intell Syst Des Appl ISDA’10 2010:501-6.  DOI
               158.      Bhowan U, Jahnston M, Zhang M. Developing new fitness functions in genetic programming for classification with unbalanced data.
                    IEEE Trans Syst Man Cybern Part B 2012;42:406-21.  DOI
               159.      Pei Z, Rozman KA, Doğan ÖN, et al. Machine-learning microstructure for inverse material design. Adv Sci 2021;8:e2101207.  DOI
                    PubMed  PMC
               160.      Lee SY, Byeon S, Kim HS, Jin H, Lee S. Deep learning-based phase prediction of high-entropy alloys: optimization, generation, and
                    explanation. Mater Des 2021;197:109260.  DOI
               161.      Wu X, Zhu Y. Heterogeneous materials: a new class of materials with unprecedented mechanical properties. Mater Res Lett
                    2017;5:527-32.  DOI
               162.      Zhu Y, Wu X. Perspective on hetero-deformation induced (HDI) hardening and back stress. Mater Res Lett 2019;7:393-8.  DOI
               163.      Sathiyamoorthi P, Kim HS. High-entropy alloys with heterogeneous microstructure: Processing and mechanical properties. Prog
                    Mater Sci 2022;123:100709.  DOI
               164.      Gwalani B, Gangireddy S, Zheng Y, Soni V, Mishra RS, Banerjee R. Influence of ordered L1(2) precipitation on strain-rate
                    dependent mechanical behavior in a eutectic high entropy alloy. Sci Rep 2019;9:6371.  DOI  PubMed  PMC
               165.      Yang Z, Wang Z, Wu Q, et al. Enhancing the mechanical properties of casting eutectic high entropy alloys with Mo addition. Appl
                    Phys A 2019:125.  DOI
               166.      Lu Y, Gao X, Jiang L, et al. Directly cast bulk eutectic and near-eutectic high entropy alloys with balanced strength and ductility in a
                    wide temperature range. Acta Mater 2017;124:143-50.  DOI
               167.      Ma L, Wang J, Jin P. Microstructure and mechanical properties variation with Ni content in Al CoCr Fe Ni  (x = 1.1, 1.5, 1.8,
                                                                                   0.8  0.6  0.7  x
                    2.0) eutectic high-entropy alloy system. Mater Res Express 2020;7:016566.  DOI
               168.      Wu Q, Wang Z, Zheng T, et al. A casting eutectic high entropy alloy with superior strength-ductility combination. Mater Lett
                    2019;253:268-71.  DOI
               169.      Liu Q, Liu X, Fan X, et al. Designing novel AlCoCrNi eutectic high entropy alloys. J Alloys Compd 2022;904:163775.  DOI
               170.      Dong Y, Yao Z, Huang X, et al. Microstructure and mechanical properties of AlCo CrFeNi  eutectic high-entropy-alloy system. J
                                                                          x     3-x
   133   134   135   136   137   138   139   140   141   142   143