Page 135 - Read Online
P. 135

Chen et al. J Mater Inf 2023;3:10  https://dx.doi.org/10.20517/jmi.2023.06       Page 15 of 19

                    elevated temperatures. Mater Res Lett 2020;8:373-82.  DOI
               46.       Dong Y, Lu Y, Kong J, Zhang J, Li T. Microstructure and mechanical properties of multi-component AlCrFeNiMox high-entropy
                    alloys. J Alloys Compd 2013;573:96-101.  DOI
               47.       Jin X, Zhou Y, Zhang L, Du X, Li B. A novel Fe Co Ni Al  eutectic high entropy alloy with excellent tensile properties. Mater
                                                    20  20  41  19
                    Lett 2018;216:144-6.  DOI
               48.       Vikram R, Gupta K, Suwas S. Design of a new cobalt base nano-lamellar eutectic high entropy alloy. Scr Mater 2021;202:113993.
                    DOI
               49.       Wen X, Cui X, Jin G, Liu Y, Zhang Y, Fang Y. In-situ synthesis of nano-lamellar Ni CrCoFe Mo Nb  eutectic high-entropy alloy
                                                                           1.5   0.5  0.1  x
                    coatings by laser cladding: alloy design and microstructure evolution. Surf Coatings Technol 2021;405:126728.  DOI
               50.       Shi P, Ren W, Zheng T, et al. Enhanced strength-ductility synergy in ultrafine-grained eutectic high-entropy alloys by inheriting
                    microstructural lamellae. Nat Commun 2019;10:489.  DOI  PubMed  PMC
               51.       Muskeri S, Hasannaeimi V, Salloom R, Sadeghilaridjani M, Mukherjee S. Small-scale mechanical behavior of a eutectic high entropy
                    alloy. Sci Rep 2020;10:2669.  DOI  PubMed  PMC
               52.       Lim X. Mixed-up metals make for stronger, tougher, stretchier alloys. Nature 2016;533:306-7.  DOI  PubMed
               53.       Jiang H, Qiao D, Lu Y, et al. Direct solidification of bulk ultrafine-microstructure eutectic high-entropy alloys with outstanding
                    thermal stability. Scr Mater 2019;165:145-9.  DOI
               54.       Yu Y, He F, Qiao Z, Wang Z, Liu W, Yang J. Effects of temperature and microstructure on the triblogical properties of
                    CoCrFeNiNbx eutectic high entropy alloys. J Alloys Compd 2019;775:1376-85.  DOI
               55.       Karati A, Guruvidyathri K, Hariharan V, Murty B. Thermal stability of AlCoFeMnNi high-entropy alloy. Scr Mater 2019;162:465-7.
                    DOI
               56.       Shen J, Agrawal P, Rodrigues TA, et al. Gas tungsten arc welding of as-cast AlCoCrFeNi  eutectic high entropy alloy. Mater Des
                                                                               2.1
                    2022;223:111176.  DOI
               57.       Jiang H, Han K, Gao X, et al. A new strategy to design eutectic high-entropy alloys using simple mixture method. Mater Des
                    2018;142:101-5.  DOI
               58.       Xie T, Xiong Z, Xu Z, Liu Z, Cheng X. Another eutectic point of Co-Cr-Fe-Ni-M (Hf, Ta, Nb) high-entropy system determined using
                    a simple mixture method correlated with mixing enthalpy. Mater Sci Eng A 2021;802:140634.  DOI
               59.       Jin X, Bi J, Liang Y, Qiao J, Li B. Triple-phase eutectic high-entropy alloy: Al Co Cr Fe Nb Ni . Metall Mater Trans A
                                                                           10  18  18  18  10  26
                    2021;52:1314-20.  DOI
               60.       Duan D, Wu Y, Chen H, et al. A strategy to design eutectic high-entropy alloys based on binary eutectics. J Mater Sci Technol
                    2022;103:152-6.  DOI
               61.       He F, Wang Z, Ai C, Li J, Wang J, Kai J. Grouping strategy in eutectic multi-principal-component alloys. Mater Chem Phys
                    2019;221:138-43.  DOI
               62.       Li T, Lu Y, Wang T, Li T. Grouping strategy via d-orbit energy level to design eutectic high-entropy alloys. Appl Phys Lett
                    2021;119:071905.  DOI
               63.       Zhang L, Lu Y, Amar A, et al. Designing eutectic high-entropy alloys containing nonmetallic elements. Adv Eng Mater
                    2022;24:2200486.  DOI
               64.       He F, Wang Z, Cheng P, et al. Designing eutectic high entropy alloys of CoCrFeNiNb . J Alloys Compd 2016;656:284-9.  DOI
                                                                           x
               65.       Jin X, Zhou Y, Zhang L, Du X, Li B. A new pseudo binary strategy to design eutectic high entropy alloys using mixing enthalpy and
                    valence electron concentration. Mater Des 2018;143:49-55.  DOI
               66.       Mukarram M, Mujahid M, Yaqoob K. Design and development of CoCrFeNiTa eutectic high entropy alloys. J Mater Res Technol
                    2021;10:1243-9.  DOI
               67.       Huang T, Zhang J, Zhang J, Liu L. Effective design of Cr-Co-Ni-Ta eutectic medium entropy alloys with high compressive properties
                    using combined CALPHAD and experimental approaches. Appl Sci 2021;11:6102.  DOI
               68.       Ding Z, He Q, Yang Y. Exploring the design of eutectic or near-eutectic multicomponent alloys: from binary to high entropy alloys.
                    Sci China Technol Sci 2018;61:159-67.  DOI
               69.       Zou C, Li J, Wang WY, et al. Integrating data mining and machine learning to discover high-strength ductile titanium alloys. Acta
                    Mater 2021;202:211-21.  DOI
               70.       Nitol MS, Dickel DE, Barrett CD. Machine learning models for predictive materials science from fundamental physics: an application
                    to titanium and zirconium. Acta Mater 2022;224:117347.  DOI
               71.       Wang C, Fu H, Jiang L, Xue D, Xie J. A property-oriented design strategy for high performance copper alloys via machine learning.
                    NPJ Comput Mater 2019:5.  DOI
               72.       Zhang H, Fu H, Zhu S, Yong W, Xie J. Machine learning assisted composition effective design for precipitation strengthened copper
                    alloys. Acta Mater 2021;215:117118.  DOI
               73.       Zhao X, Huang H, Wen C, Su Y, Qian P. Accelerating the development of multi-component Cu-Al-based shape memory alloys with
                    high elastocaloric property by machine learning. Comput Mater Sci 2020;176:109521.  DOI
               74.       Singh R, Singh RP, Trehan R. Machine learning algorithms based advanced optimization of EDM parameters: an experimental
                    investigation into shape memory alloys. Sensors Int 2022;3:100179.  DOI
               75.       Hmede R, Chapelle F, Lapusta Y. Review of neural network modeling of shape memory alloys. Sensors 2022;22:5610.  DOI
                    PubMed  PMC
   130   131   132   133   134   135   136   137   138   139   140