Page 136 - Read Online
P. 136

Page 16 of 19                         Chen et al. J Mater Inf 2023;3:10  https://dx.doi.org/10.20517/jmi.2023.06

               76.       Ward L, O'keeffe SC, Stevick J, Jelbert GR, Aykol M, Wolverton C. A machine learning approach for engineering bulk metallic glass
                    alloys. Acta Mater 2018;159:102-11.  DOI
               77.       Xiong J, Shi S, Zhang T. A machine-learning approach to predicting and understanding the properties of amorphous metallic alloys.
                    Mater Des 2020;187:108378.  DOI
               78.       Zhou ZQ, He QF, Liu XD, et al. Rational design of chemically complex metallic glasses by hybrid modeling guided machine
                    learning. NPJ Comput Mater 2021:7.  DOI
               79.       Wu Q, Wang Z, Hu X, et al. Uncovering the eutectics design by machine learning in the Al-Co-Cr-Fe-Ni high entropy system. Acta
                    Mater 2020;182:278-86.  DOI
               80.       Liu F, Xiao X, Huang L, Tan L, Liu Y. Design of NiCoCrAl eutectic high entropy alloys by combining machine learning with
                    CALPHAD method. Mater Today Commun 2022;30:103172.  DOI
               81.       Chen K, Xiong Z, An M, et al. Machine learning correlated with phenomenological mode unlocks the vast compositional space of
                    eutectics of multi-principal element alloys. Mater Des 2022;219:110795.  DOI
               82.       Agarwal R, Sonkusare R, Jha SR, Gurao N, Biswas K, Nayan N. Understanding the deformation behavior of CoCuFeMnNi high
                    entropy alloy by investigating mechanical properties of binary ternary and quaternary alloy subsets. Mater Des 2018;157:539-50.
                    DOI
               83.       Tsai M, Tsai R, Chang T, Huang W. Intermetallic phases in high-entropy alloys: statistical analysis of their prevalence and structural
                    inheritance. Metals 2019;9:247.  DOI
               84.       Ding Z, He Q, Wang Q, Yang Y. Superb strength and high plasticity in laves phase rich eutectic medium-entropy-alloy
                    nanocomposites. Int J Plast 2018;106:57-72.  DOI
               85.       Chung D, Ding Z, Yang Y. Hierarchical eutectic structure enabling superior fracture toughness and superb strength in CoCrFeNiNb
                                                                                                         0.5
                    eutectic high entropy alloy at room temperature. Adv Eng Mater 2019;21:1801060.  DOI
               86.       Ding Z, He Q, Chung D, Yang Y. Evading brittle fracture in submicron-sized high entropy intermetallics in dual-phase eutectic
                    microstructure. Scr Mater 2020;187:280-4.  DOI
               87.       Chen G, Fu X, Luo J, Zu Y, Zhou W. Effect of cooling rate on the microstructure and mechanical properties of melt-grown Al O /
                                                                                                       2  3
                    YAG/ZrO  eutectic ceramic. J Eur Ceram Soc 2012;32:4195-204.  DOI
                           2
               88.       Liu H, Su H, Shen Z, et al. Direct formation of Al O /GdAlO /ZrO  ternary eutectic ceramics by selective laser melting:
                                                        2  3    3   2
                    microstructure evolutions. J Eur Ceram Soc 2018;38:5144-52.  DOI
               89.       He QF, Ye YF, Yang Y. The configurational entropy of mixing of metastable random solid solution in complex multicomponent
                    alloys. J Appl Phys 2016;120:154902.  DOI
               90.       He QF, Ding ZY, Ye YF, Yang Y. Design of high-entropy alloy: a perspective from nonideal mixing. JOM 2017;69:2092-8.  DOI
               91.       Laplanche G, Kostka A, Reinhart C, Hunfeld J, Eggeler G, George E. Reasons for the superior mechanical properties of medium-
                    entropy CrCoNi compared to high-entropy CrMnFeCoNi. Acta Mater 2017;128:292-303.  DOI
               92.       Zhao P, Guan B, Tong Y, et al. A quasi-in-situ EBSD study of the thermal stability and grain growth mechanisms of CoCrNi medium
                    entropy alloy with gradient-nanograined structure. J Mater Sci Technol 2022;109:54-63.  DOI
               93.       Vaidya M, Guruvidyathri K, Murty B. Phase formation and thermal stability of CoCrFeNi and CoCrFeMnNi equiatomic high entropy
                    alloys. J Alloys Compd 2019;774:856-64.  DOI
               94.       He F, Wang Z, Wu Q, et al. Solid solution island of the Co-Cr-Fe-Ni high entropy alloy system. Scr Mater 2017;131:42-6.  DOI
               95.       Ai C, He F, Guo M, et al. Alloy design, micromechanical and macromechanical properties of CoCrFeNiTa  eutectic high entropy
                                                                                           x
                    alloys. J Alloys Compd 2018;735:2653-62.  DOI
               96.       Rahul MR, Phanikumar G. Design of a seven-component eutectic high-entropy alloy. Metall and Mat Trans A 2019;50:2594-8.  DOI
               97.       Zhang L, Lu Y, Amar A, et al. Eutectic high entropy alloys containing B and Si with excellent mechanical properties in annealing.
                    Mater Sci Eng A 2022;856:143994.  DOI
               98.       Chung D, Kwon H, Eze C, Kim W, Na Y. Influence of Ti addition on the strengthening and toughening effect in CoCrFeNiTi  multi
                                                                                                      x
                    principal element alloys. Metals 2021;11:1511.  DOI
               99.       Guo Y, Liu L, Zhang Y, et al. A superfine eutectic microstructure and the mechanical properties of CoCrFeNiMo  high-entropy
                                                                                                x
                    alloys. J Mater Res 2018;33:3258-65.  DOI
               100.      Lu W, Luo X, Yang Y, Huang B. Effects of Nb additions on structure and mechanical properties evolution of CoCrNi medium-
                    entropy alloy. Mat Express 2019;9:291-8.  DOI
               101.      Zhang X, Chou T, Li W, Wang Y, Huang J, Cheng L. Microstructure and mechanical properties of (FeCoNi)  (NiAl)  eutectic
                                                                                             100-x  x
                    multi-principal element alloys. J Alloys Compd 2021;862:158349.  DOI
               102.      Huo W, Zhou H, Fang F, Xie Z, Jiang J. Microstructure and mechanical properties of CoCrFeNiZrx eutectic high-entropy alloys.
                    Mater Des 2017;134:226-33.  DOI
               103.      Xie T, Xiong Z, Liu Z, Deng G, Cheng X. Excellent combination of compressive strength and ductility of (CoCrFeNi) (Co  Cr  Fe
                                                                                                   0.26  0.07
                      Ni  Hf ) high-entropy alloys. Mater Des 2021;202:109569.  DOI
                    0.16  0.31  0.4
               104.      Wang M, Lu Y, Lan J, et al. Lightweight, ultrastrong and high thermal-stable eutectic high-entropy alloys for elevated-temperature
                    applications. Acta Mater 2023;248:118806.  DOI
               105.      Zhu M, Yao L, Liu Y, Zhang M, Li K, Jian Z. Microstructure evolution and mechanical properties of a novel CrNbTiZrAl  (0.25 ≤ x
                                                                                                   x
                    ≤ 1.25) eutectic refractory high-entropy alloy. Mater Lett 2020;272:127869.  DOI
               106.      Liu Y, Zhang Y, Zhang H, et al. Microstructure and mechanical properties of refractory HfMo NbTiV Si  high-entropy
                                                                                       0.5   0.5  x
   131   132   133   134   135   136   137   138   139   140   141