Page 133 - Read Online
P. 133

Chen et al. J Mater Inf 2023;3:10  https://dx.doi.org/10.20517/jmi.2023.06       Page 13 of 19

               DECLARATIONS
               Author’s contributions
               Supervised the project: Yang Y
               Wrote the manuscript: Chen Z, Yang Y


               Availability of data and materials
               Not applicable.


               Financial support and sponsorship
               The research of Yang Y is supported by the Research Grants Council (RGC), the Hong Kong government,
               through the General Research Fund (GRF) with account number (11201721) and by City University of
               Hong Kong through CityU Strategical Research Grants (7005933) and APRC-CityU new research
               initiatives/infrastructure support from central (9610603).

               Conflicts of interest
               Both authors declared that there are no conflicts of interest.

               Ethical approval and consent to participate
               Not applicable.

               Consent for publication
               Not applicable.

               Copyright
               © The Author(s) 2023.


               REFERENCES
               1.       Tiwary CS, Pandey P, Sarkar S, et al. Five decades of research on the development of eutectic as engineering materials. Prog Mater
                    Sci 2022;123:100793.  DOI
               2.       Chanda B, Potnis G, Jana PP, Das J. A review on nano-/ultrafine advanced eutectic alloys. J Alloys Compd 2020;827:154226.  DOI
               3.       Kerr HW, Winegard WC. Solidification of eutectic alloys. JOM 1966;18:563-9.  DOI
               4.       Dunlevey FM, Wallace JF. The effect of thermal cycling on the structure and properties of a Co, Cr, Ni-TaC directionally solidified
                    eutectic alloy. Metall Trans B 1974;5:1351-6.  DOI
               5.       Buchanan ER, Tarshis LA. Strengths and failure mechanisms of a Co-15Cr-13TaC directionally solidified eutectic alloy. Metall
                    Trans B 1974;5:1413-22.  DOI
               6.       Oishi K, Araki S, Terada Y. Effect of lamellar spacing on creep strength of α-Mg/C14-Mg Ca eutectic alloy. Mater Trans
                                                                                    2
                    2021;62:1414-9.  DOI
               7.       El-ashram T, Shalaby RM. Effect of rapid solidification and small additions of Zn and Bi on the structure and properties of Sn-Cu
                    eutectic alloy. J Electron Mater 2005;34:212-5.  DOI
               8.       El-daly A, Hammad A. Enhancement of creep resistance and thermal behavior of eutectic Sn-Cu lead-free solder alloy by Ag and In-
                    additions. Mater Des 2012;40:292-8.  DOI
               9.       Liu Y, Michi RA, Dunand DC. Cast near-eutectic Al-12.5 wt.% Ce alloy with high coarsening and creep resistance. Mater Sci Eng A
                    2019;767:138440.  DOI
               10.       Erol M, Keşlioĝlu K, Şahingöz R, Maraşl N. Experimental determination of thermal conductivity of solid and liquid phases in Bi-Sn
                    and Zn-Mg binary eutectic alloys. Met Mater Int 2005;11:421-8.  DOI
               11.       Wang Z, Wang H, Yang M, et al. Thermal reliability of Al-Si eutectic alloy for thermal energy storage. Mater Res Bull 2017;95:300-
                    6.  DOI
               12.       Saheb N, Laoui T, Daud A, Harun M, Radiman S, Yahaya R. Influence of Ti addition on wear properties of Al-Si eutectic alloys.
                    Wear 2001;249:656-62.  DOI
               13.       Yasmin T, Khalid AA, Haque M. Tribological (wear) properties of aluminum-silicon eutectic base alloy under dry sliding condition.
                    J Mater Process Technol 2004;153-154:833-8.  DOI
               14.       Pashechko M, Lenik K. Segregation of atoms of the eutectic alloys Fe-Mn-C-B-Si-Ni-Cr at friction wear. Wear 2009;267:1301-4.
                    DOI
   128   129   130   131   132   133   134   135   136   137   138