Page 137 - Read Online
P. 137

Chen et al. J Mater Inf 2023;3:10  https://dx.doi.org/10.20517/jmi.2023.06       Page 17 of 19

                    composites. J Alloys Compd 2017;694:869-76.  DOI
               107.      Panina E, Yurchenko N, Tojibaev A, Mishunin M, Zherebtsov S, Stepanov N. Mechanical properties of (HfCo)  (NbMo)
                                                                                                 100-x   x
                    refractory high-entropy alloys with a dual-phase bcc-B2 structure. J Alloys Compd 2022;927:167013.  DOI
               108.      Bai J, Wang Z, Zhang M, Qiao J. Effects of tailoring Zn additions on the microstructural evolution and electrical properties in
                    GaInSnZn  high-entropy alloys. Adv Eng Mater 2023.  DOI
                           x
               109.      Wu M, Wang S, Huang H, Shu D, Sun B. CALPHAD aided eutectic high-entropy alloy design. Mater Lett 2020;262:127175.  DOI
               110.      Yurchenko N, Panina E, Zherebtsov S, Stepanov N. Design and characterization of eutectic refractory high entropy alloys. Materialia
                    2021;16:101057.  DOI
               111.      Chen H, Mao H, Chen Q. Database development and Calphad calculations for high entropy alloys: challenges, strategies, and tips.
                    Mater Chem Phys 2018;210:279-90.  DOI
               112.      Zhou Z, Shang Y, Yang Y. A critical review of the machine learning guided design of metallic glasses for superior glass-forming
                    ability. J Mater Inf 2022;2:2.  DOI
               113.      Qiao L, Ramanujan R, Zhu J. Machine learning discovery of a new cobalt free multi-principal-element alloy with excellent
                    mechanical properties. Mater Sci Eng A 2022;845:143198.  DOI
               114.      Zhang C, Zhang F, Chen S, Cao W. Computational thermodynamics aided high-entropy alloy design. JOM 2012;64:839-45.  DOI
               115.      Wei Q, Luo G, Zhang J, et al. Designing high entropy alloy-ceramic eutectic composites of MoNbRe TaW(TiC)  with high
                                                                                          0.5     x
                    compressive strength. J Alloys Compd 2020;818:152846.  DOI
               116.      Qu N, Chen Y, Lai Z, Liu Y, Zhu J. The phase selection via machine learning in high entropy alloys. Procedia Manuf 2019;37:299-
                    305.  DOI
               117.      Zhou Z, Zhou Y, He Q, Ding Z, Li F, Yang Y. Machine learning guided appraisal and exploration of phase design for high entropy
                    alloys. NPJ Comput Mater 2019:5.  DOI
               118.      Chang H, Tao Y, Liaw PK, Ren J. Phase prediction and effect of intrinsic residual strain on phase stability in high-entropy alloys with
                    machine learning. J Alloys Compd 2022;921:166149.  DOI
               119.      Batista GEAPA, Prati RC, Monard MC. A study of the behavior of several methods for balancing machine learning training data.
                    SIGKDD Explor Newsl 2004;6:20-9.  DOI
               120.      Zhu Z, Ma K, Wang Q, Shek C. Compositional dependence of phase formation and mechanical properties in three CoCrFeNi-(Mn/
                    Al/Cu) high entropy alloys. Intermetallics 2016;79:1-11.  DOI
               121.      Tian Q, Zhang G, Yin K, Cheng W, Wang Y, Huang J. Effect of Ni content on the phase formation, tensile properties and
                    deformation mechanisms of the Ni-rich AlCoCrFeNi  (x = 2, 3, 4) high entropy alloys. Mater Charact 2021;176:111148.  DOI
                                                      x
               122.      Wen C, Zhang Y, Wang C, et al. Machine learning assisted design of high entropy alloys with desired property. Acta Mater
                    2019;170:109-17.  DOI
               123.      Dewangan SK, Kumar V. Application of artificial neural network for prediction of high temperature oxidation behavior of
                    AlCrFeMnNiW  (x = 0, 0.05, 0.1, 0.5) high entropy alloys. Int J Refract Met Hard Mater 2022;103:105777.  DOI
                              x
               124.      Roy A, Balasubramanian G. Predictive descriptors in machine learning and data-enabled explorations of high-entropy alloys. Comput
                    Mater Sci 2021;193:110381.  DOI
               125.      Krishna  YV,  Jaiswal  UK,  R  RM.  Machine  learning  approach  to  predict  new  multiphase  high  entropy  alloys.  Scr  Mater
                    2021;197:113804.  DOI
               126.      Jaiswal UK, Vamsi Krishna Y, Rahul M, Phanikumar G. Machine learning-enabled identification of new medium to high entropy
                    alloys with solid solution phases. Comput Mater Sci 2021;197:110623.  DOI
               127.      Islam N, Huang W, Zhuang HL. Machine learning for phase selection in multi-principal element alloys. Comput Mater Sci
                    2018;150:230-5.  DOI
               128.      Machaka R. Machine learning-based prediction of phases in high-entropy alloys. Comput Mater Sci 2021;188:110244.  DOI
               129.      Elton LRB. Atomic theory for students of metallurgy. Phys Bull 1960;11:309-309.  DOI
               130.      Huang W, Martin P, Zhuang HL. Machine-learning phase prediction of high-entropy alloys. Acta Mater 2019;169:225-36.  DOI
               131.      Chang Y, Jui C, Lee W, Yeh A. Prediction of the composition and hardness of high-entropy alloys by machine learning. JOM
                    2019;71:3433-42.  DOI
               132.      Bundela AS, Rahul MR. Application of machine learning algorithms with and without principal component analysis for the design of
                    new multiphase high entropy alloys. Metall Mater Trans A 2022;53:3512-9.  DOI
               133.      Jackson K, Hunt J. Lamellar and rod eutectic growth. dynamics of curved fronts. Elsevier; 1988. pp. 363-76.  DOI
               134.      Zhang Y, Wen C, Wang C, et al. Phase prediction in high entropy alloys with a rational selection of materials descriptors and
                    machine learning models. Acta Mater 2020;185:528-39.  DOI
               135.      Yan Y, Lu D, Wang K. Accelerated discovery of single-phase refractory high entropy alloys assisted by machine learning. Comput
                    Mater Sci 2021;199:110723.  DOI
               136.      Kaufmann K, Vecchio KS. Searching for high entropy alloys: a machine learning approach. Acta Mater 2020;198:178-222.  DOI
               137.      Xiong J, Shi S, Zhang T. Machine learning of phases and mechanical properties in complex concentrated alloys. J Mater Sci Technol
                    2021;87:133-42.  DOI
               138.      Bobbili R, Ramakrishna B, Madhu V. Development of machine learning based models for design of high entropy alloys. Mater
                    Technol 2022;37:2580-7.  DOI
               139.      Mandal P, Choudhury A, Mallick AB, Ghosh M. Phase prediction in high entropy alloys by various machine learning modules using
   132   133   134   135   136   137   138   139   140   141   142