Page 116 - Read Online
P. 116

Mooraj et al. J Mater Inf 2023;3:4  https://dx.doi.org/10.20517/jmi.2022.41      Page 41 of 45

               90.       Vazquez G, Singh P, Sauceda D, et al. Efficient machine-learning model for fast assessment of elastic properties of high-entropy
                    alloys. Acta Mater 2022;232:117924.  DOI
               91.       Purcell TAR, Scheffler M, Carbogno C, Ghiringhelli LM. SISSO++: A C++ implementation of the sure-independence screening and
                    sparsifying operator approach. J Open Res Softw 2022;7:3960.  DOI
               92.       Sorkin V, Yu ZG, Chen S, Tan TL, Aitken ZH, Zhang YW. A first-principles-based high fidelity, high throughput approach for the
                    design of high entropy alloys. Sci Rep 2022;12:11894.  DOI  PubMed  PMC
               93.       Hautier G, Jain A, Ong SP. From the computer to the laboratory: materials discovery and design using first-principles calculations. J
                    Mater Sci 2012;47:7317-40.  DOI
               94.       Ikeda Y, Grabowski B, Körmann F. Ab initio phase stabilities and mechanical properties of multicomponent alloys: a comprehensive
                    review for high entropy alloys and compositionally complex alloys. Mater Charact 2019;147:464-511.  DOI
               95.       Kohn W, Sham LJ. Self-consistent equations including exchange and correlation effects. Phys Rev 1965;140:A1133-8.  DOI
               96.       Ceperley DM, Alder BJ. Ground state of the electron gas by a stochastic method. Phys Rev Lett 1980;45:566-9.  DOI
               97.       Perdew JP. Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys Rev B Condens
                    Matter 1986;33:8822-4.  DOI
               98.       Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett 1996;77:3865-8.  DOI  PubMed
               99.       Perdew JP, Chevary JA, Vosko SH, et al. Atoms, molecules, solids, and surfaces: applications of the generalized gradient
                    approximation for exchange and correlation. Phys Rev B Condens Matter 1992;46:6671-87.  DOI
               100.      Kim G, Diao H, Lee C, et al. First-principles and machine learning predictions of elasticity in severely lattice-distorted high-entropy
                    alloys with experimental validation. Acta Mater 2019;181:124-38.  DOI
               101.      Rittiruam M, Noppakhun J, Setasuban S, et al. High-throughput materials screening algorithm based on first-principles density
                    functional theory and artificial neural network for high-entropy alloys. Sci Rep 2022;12:16653.  DOI  PubMed  PMC
               102.      Bellaiche L, Vanderbilt D. Virtual crystal approximation revisited: application to dielectric and piezoelectric properties of
                    perovskites. Phys Rev B 2000;61:7877-82.  DOI
               103.      Ramer N, Rappe A. Application of a new virtual crystal approach for the study of disordered perovskites. J Phys Chem Solids
                    2000;61:315-20.  DOI
               104.      Chen L, Hao X, Wang Y, Zhang X, Liu H. First-principles calculation of the effect of Ti content on the structure and properties of
                    TiVNbMo refractory high-entropy alloy. Mater Res Express 2020;7:106516.  DOI
               105.      Lederer Y, Toher C, Vecchio KS, Curtarolo S. The search for high entropy alloys: a high-throughput ab-initio approach. Acta Mater
                    2018;159:364-83.  DOI
               106.      Curtarolo S, Setyawan W, Hart GL, et al. AFLOW: an automatic framework for high-throughput materials discovery. Comput Mater
                    Sci 2012;58:218-26.  DOI
               107.      Sanchez J, Ducastelle F, Gratias D. Generalized cluster description of multicomponent systems. Physica A 1984;128:334-50.  DOI
               108.      de Walle A, Asta M, Ceder G. The alloy theoretic automated toolkit: a user guide. Calphad 2002;26:539-53.  DOI
               109.      Berding MA, Sher A. Electronic quasichemical formalism: application to arsenic deactivation in silicon. Phys Rev B 1998;58:3853-
                    64.  DOI
               110.      Jiang L, Lu Y, Jiang H, et al. Formation rules of single phase solid solution in high entropy alloys. Mater Sci Technol 2015.  DOI
               111.      Guo S, Ng C, Lu J, Liu CT. Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. J Appl
                    Phys 2011;109:103505.  DOI
               112.      Yang S, Liu G, Zhong Y. Revisit the VEC criterion in high entropy alloys (HEAs) with high-throughput ab initio calculations: a case
                    study with Al-Co-Cr-Fe-Ni system. J Alloys Compd 2022;916:165477.  DOI
               113.      Zhou K & Liu B. Molecular dynamics simulation: fundamentals and applications. Academic Press; 2022.  DOI
               114.      Car R, de Angelis F, Giannozzi P, Marzari N. First-principles molecular dynamics. In: Yip S, editor. Handbook of Materials
                    Modeling. Dordrecht: Springer; 2005. pp. 59-76.  DOI
               115.      Tang Y, Li D. Nano-tribological behavior of high-entropy alloys CrMnFeCoNi and CrFeCoNi under different conditions: a molecular
                    dynamics study. Wear 2021;476:203583.  DOI
               116.      Yin S, Zuo Y, Abu-Odeh A, et al. Atomistic simulations of dislocation mobility in refractory high-entropy alloys and the effect of
                    chemical short-range order. Nat Commun 2021;12:4873.  DOI  PubMed  PMC
               117.      Fan Y, Wang W, Hao Z, Zhan C. Work hardening mechanism based on molecular dynamics simulation in cutting Ni-Fe-Cr series of
                    Ni-based alloy. J Alloys Compd 2020;819:153331.  DOI
               118.      Li J, Fang Q, Liu B, Liu Y, Liu Y. Mechanical behaviors of AlCrFeCuNi high-entropy alloys under uniaxial tension via molecular
                    dynamics simulation. RSC Adv 2016;6:76409-19.  DOI
               119.      Trong DN, Long VC, Ţălu Ş. Effects of number of atoms and doping concentration on the structure, phase transition, and
                    crystallization process of Fe  Ni Coy alloy: a molecular dynamic study. Appl Sci 2022;12:8473.  DOI
                                      1-x-y  x
               120.      Xie L, Brault P, Thomann A, Yang X, Zhang Y, Shang G. Molecular dynamics simulation of Al-Co-Cr-Cu-Fe-Ni high entropy alloy
                    thin film growth. Intermetallics 2016;68:78-86.  DOI
               121.      Pan Z, Fu Y, Wei Y, Yan X, Luo H, Li X. Deformation mechanisms of TRIP-TWIP medium-entropy alloys via molecular dynamics
                    simulations. Int J Mech Sci 2022;219:107098.  DOI
               122.      Jarlöv A, Ji W, Zhu Z, et al. Molecular dynamics study on the strengthening mechanisms of Cr-Fe-Co-Ni high-entropy alloys based
                    on the generalized stacking fault energy. J Alloys Compd 2022;905:164137.  DOI
   111   112   113   114   115   116   117   118   119   120   121