Page 114 - Read Online
P. 114

Mooraj et al. J Mater Inf 2023;3:4  https://dx.doi.org/10.20517/jmi.2022.41      Page 39 of 45

                    2022;12:3789-96.  DOI
               27.       Ludwig A. Discovery of new materials using combinatorial synthesis and high-throughput characterization of thin-film materials
                    libraries combined with computational methods. NPJ Comput Mater 2019;5:70.  DOI
               28.       Shi Y, Yang B, Rack PD, Guo S, Liaw PK, Zhao Y. High-throughput synthesis and corrosion behavior of sputter-deposited
                    nanocrystalline Al (CoCrFeNi)100- combinatorial high-entropy alloys. Mater Design 2020;195:109018.  DOI
               29.       Kube SA, Sohn S, Uhl D, Datye A, Mehta A, Schroers J. Phase selection motifs in high entropy alloys revealed through
                    combinatorial methods: large atomic size difference favors BCC over FCC. Acta Mater 2019;166:677-86.  DOI
               30.       Keil T, Utt D, Bruder E, Stukowski A, Albe K, Durst K. Solid solution hardening in CrMnFeCoNi-based high entropy alloy systems
                    studied by a combinatorial approach. J Mater Res 2021;36:2558-70.  DOI
               31.       Geuser FD. High-throughput in-situ characterization and modeling of precipitation kinetics in compositionally graded alloys. Acta
                    Mater 2015;101:1-9.  DOI
               32.       Zhang X, Xiang Y. Combinatorial approaches for high-throughput characterization of mechanical properties. J Materiomics
                    2017;3:209-20.  DOI
               33.       Wang Z, Zhang L, Li W, et al. A high-throughput approach to explore the multi-component alloy space: a case study of nickel-based
                    superalloys. J Alloys Compd 2021;858:158100.  DOI
               34.       Zhu C, Li C, Wu D, et al. A titanium alloys design method based on high-throughput experiments and machine learning. J Mater Res
                    Technol 2021;11:2336-53.  DOI
               35.       Liu YH, Fujita T, Aji DP, Matsuura M, Chen MW. Structural origins of Johari-Goldstein relaxation in a metallic glass. Nat Commun
                    2014;5:3238.  DOI  PubMed
               36.       Li MX, Zhao SF, Lu Z, et al. High-temperature bulk metallic glasses developed by combinatorial methods. Nature 2019;569:99-103.
                    DOI  PubMed
               37.       Frazier WE. Metal additive manufacturing: a review. J Materi Eng Perform 2014;23:1917-28.  DOI
               38.       Ngo TD, Kashani A, Imbalzano G, Nguyen KT, Hui D. Additive manufacturing (3D printing): a review of materials, methods,
                    applications and challenges. Compos B Eng 2018;143:172-96.  DOI
               39.       Snow Z, Nassar AR, Reutzel EW. Invited review article: review of the formation and impact of flaws in powder bed fusion additive
                    manufacturing. Addit Manuf 2020;36:101457.  DOI
               40.       Clare  A,  Mishra  R,  Merklein  M,  et  al.  Alloy  design  and  adaptation  for  additive  manufacture.  J  Mater  Process  Technol
                    2022;299:117358.  DOI
               41.       Bandyopadhyay A, Traxel KD. Invited review article: metal-additive manufacturing - Modeling strategies for application-optimized
                    designs. Addit Manuf 2018;22:758-74.  DOI  PubMed  PMC
               42.       Zhang C, Ouyang D, Pauly S, Liu L. 3D printing of bulk metallic glasses. Mater Sci Eng R Rep 2021;145:100625.  DOI
               43.       Silva LJ, Souza DM, de Araújo DB, Reis RP, Scotti A. Concept and validation of an active cooling technique to mitigate heat
                    accumulation in WAAM. Int J Adv Manuf Technol 2020;107:2513-23.  DOI
               44.       Dhinakaran V, Ajith J, Fathima Yasin Fahmidha A, Jagadeesha T, Sathish T, Stalin B. Wire arc additive manufacturing (WAAM)
                    process of nickel based superalloys - a review. Mater Today 2020;21:920-5.  DOI
               45.       Kozamernik N, Bračun D, Klobčar D. WAAM system with interpass temperature control and forced cooling for near-net-shape
                    printing of small metal components. Int J Adv Manuf Technol 2020;110:1955-68.  DOI
               46.       Hou P, Mooraj S, Champagne VK, et al. Effect of build height on temperature evolution and thermally induced residual stresses in
                    plasma arc additively manufactured stainless steel. Metall Mater Trans A 2022;53:627-39.  DOI
               47.       Borkar T, Gwalani B, Choudhuri D, et al. A combinatorial assessment of Al CrCuFeNi  (0 < x < 1.5) complex concentrated alloys:
                                                                      x      2
                    microstructure, microhardness, and magnetic properties. Acta Mater 2016;116:63-76.  DOI
               48.       Miracle D, Senkov O. A critical review of high entropy alloys and related concepts. Acta Mater 2017;122:448-511.  DOI
               49.       Li Z, Raabe D. Strong and ductile non-equiatomic high-entropy alloys: design, processing, microstructure, and mechanical properties.
                    JOM 2017;69:2099-106.  DOI  PubMed  PMC
               50.       Choi W, Jung S, Jo YH, Lee S, Lee B. Design of new face-centered cubic high entropy alloys by thermodynamic calculation. Met
                    Mater Int 2017;23:839-47.  DOI
               51.       Yeh JW. Recent progress in high-entropy alloys. Available from: https://www.researchgate.net/profile/Jien-Wei-Yeh/publication/
                    245440481_Recent_progress_in_high-entropy_alloys/links/02e7e52456c6fbaec9000000/Recent-progress-in-high-entropy-alloys.pdf
                    [Last accessed on 16 Mar 2023].
               52.       Li H, Lai J, Li Z, Wang L. Multi-sites electrocatalysis in high-entropy alloys. Adv Funct Mater 2021;31:2106715.  DOI
               53.       Marshal A, Pradeep K, Music D, Zaefferer S, De P, Schneider J. Combinatorial synthesis of high entropy alloys: introduction of a
                    novel, single phase, body-centered-cubic FeMnCoCrAl solid solution. J Alloys Compd 2017;691:683-9.  DOI
               54.       Yao H, Qiao J, Hawk J, Zhou H, Chen M, Gao M. Mechanical properties of refractory high-entropy alloys: experiments and
                    modeling. J Alloys Compd 2017;696:1139-50.  DOI
               55.       Zhang Y, Zhou Y, Lin J, Chen G, Liaw P. Solid-solution phase formation rules for multi-component alloys. Adv Eng Mater
                    2008;10:534-8.  DOI
               56.       Bao N, Zuo J, Du Z, Yang M, Jiang G, Zhang L. Computational characterization of the structural and mechanical properties of Al
                                                                                                         x
                    CoCrFeNiTi  high entropy alloys. Mater Res Express 2019;6:096519.  DOI
                            1-x
               57.       Dong Y, Chen QS, Lu YP, Zhang PC, Li TJ. Effect of aging temperature on microstructure and hardness of CoCrFeNiTi  high
                                                                                                     0.5
   109   110   111   112   113   114   115   116   117   118   119