Page 115 - Read Online
P. 115

Page 40 of 45                         Mooraj et al. J Mater Inf 2023;3:4  https://dx.doi.org/10.20517/jmi.2022.41

                    entropy alloy. Mater Sci Forum 2014;789:48-53.  DOI
               58.       Guo S, Ng C, Liu C. Anomalous solidification microstructures in Co-free Al CrCuFeNi  high-entropy alloys. J Alloys Compd
                                                                        x       2
                    2013;557:77-81.  DOI
               59.       Chen J, Zhou X, Wang W, et al. A review on fundamental of high entropy alloys with promising high-temperature properties. J
                    Alloys Compd 2018;760:15-30.  DOI
               60.       Stepanov N, Shaysultanov D, Ozerov M, Zherebtsov S, Salishchev G. Second phase formation in the CoCrFeNiMn high entropy
                    alloy after recrystallization annealing. Mater Lett 2016;185:1-4.  DOI
               61.       Toda-caraballo I, Rivera-díaz-del-castillo PE. Modelling solid solution hardening in high entropy alloys. Acta Mater 2015;85:14-23.
                    DOI
               62.       He Q, Yang Y. On lattice distortion in high entropy alloys. Front Mater 2018;5:42.  DOI
               63.       Lee  C,  Chou  Y,  Kim  G,  et  al.  Lattice-distortion-enhanced  yield  strength  in  a  refractory  high-entropy  alloy.  Adv  Mater
                    2020;32:e2004029.  DOI  PubMed
               64.       Lee C, Song G, Gao MC, et al. Lattice distortion in a strong and ductile refractory high-entropy alloy. Acta Mater 2018;160:158-72.
                    DOI
               65.       Dirras G, Lilensten L, Djemia P, et al. Elastic and plastic properties of as-cast equimolar TiHfZrTaNb high-entropy alloy. Mater Sci
                    Eng A 2016;654:30-8.  DOI
               66.       Owen L, Pickering E, Playford H, Stone H, Tucker M, Jones N. An assessment of the lattice strain in the CrMnFeCoNi high-entropy
                    alloy. Acta Mater 2017;122:11-8.  DOI
               67.       Senkov O, Scott J, Senkova S, Miracle D, Woodward C. Microstructure and room temperature properties of a high-entropy
                    TaNbHfZrTi alloy. J Alloys Compd 2011;509:6043-8.  DOI
               68.       Guo S. Phase selection rules for cast high entropy alloys: an overview. Mater Sci Technol 2015;31:1223-30.  DOI
               69.       Zhang Y, Lu ZP, Ma SG, et al. Guidelines in predicting phase formation of high-entropy alloys. MRS Commun 2014;4:57-62.  DOI
               70.       Kottke J, Laurent-brocq M, Fareed A, et al. Tracer diffusion in the Ni-CoCrFeMn system: transition from a dilute solid solution to a
                    high entropy alloy. Scr Mater 2019;159:94-8.  DOI
               71.       Mehta A, Sohn Y. Investigation of sluggish diffusion in FCC Al  CoCrFeNi high-entropy alloy. Mate Res Lett 2021;9:239-46.  DOI
                                                             0.25
               72.       Dąbrowa J, Danielewski M. State-of-the-art diffusion studies in the high entropy alloys. Metals 2020;10:347.  DOI
               73.       Sathiaraj G, Ahmed M, Bhattacharjee P. Microstructure and texture of heavily cold-rolled and annealed fcc equiatomic medium to
                    high entropy alloys. J Alloys Compd 2016;664:109-19.  DOI
               74.       Bhattacharjee P, Sathiaraj G, Zaid M, et al. Microstructure and texture evolution during annealing of equiatomic CoCrFeMnNi high-
                    entropy alloy. J Alloys Compd 2014;587:544-52.  DOI
               75.       Sathiaraj G, Bhattacharjee P. Effect of starting grain size on the evolution of microstructure and texture during thermo-mechanical
                    processing of CoCrFeMnNi high entropy alloy. J Alloys Compd 2015;647:82-96.  DOI
               76.       Ranganathan S. Alloyed pleasures: multimetallic cocktails. Available from: http://eprints.iisc.ac.in/6189/1/Alloyed_pleasures.pdf
                    [Last accessed on 16 Mar 2023].
               77.       Qiao L, Liu Y, Zhu J. A focused review on machine learning aided high-throughput methods in high entropy alloy. J Alloys Compd
                    2021;877:160295.  DOI
               78.       Butler KT, Davies DW, Cartwright H, Isayev O, Walsh A. Machine learning for molecular and materials science. Nature
                    2018;559:547-55.  DOI  PubMed
               79.       Yang C, Ren C, Jia Y, Wang G, Li M, Lu W. A machine learning-based alloy design system to facilitate the rational design of high
                    entropy alloys with enhanced hardness. Acta Mater 2022;222:117431.  DOI
               80.       Krishna YV, Jaiswal UK, Rahul RM. Machine learning approach to predict new multiphase high entropy alloys. Scr Mater
                    2021;197:113804.  DOI
               81.       Zhou T, Song Z, Sundmacher K. Big data creates new opportunities for materials research: a review on methods and applications of
                    machine learning for materials design. Engineering 2019;5:1017-26.  DOI
               82.       Liu X, Xu P, Zhao J, Lu W, Li M, Wang G. Material machine learning for alloys: Applications, challenges and perspectives. J Alloys
                    Compd 2022;921:165984.  DOI
               83.       Liu S, Kappes BB, Amin-ahmadi B, Benafan O, Zhang X, Stebner AP. Physics-informed machine learning for composition - process
                    - property design: shape memory alloy demonstration. Appl Mater Today 2021;22:100898.  DOI
               84.       Yi W, Liu G, Lu Z, Gao J, Zhang L. Efficient alloy design of Sr-modified A356 alloys driven by computational thermodynamics and
                    machine learning. J Mater Sci Technol 2022;112:277-90.  DOI
               85.       White AD. Deep learning for molecules and materials. LiveCoMS 2022:3.  DOI
               86.       Nassar A, Mullis A. Rapid screening of high-entropy alloys using neural networks and constituent elements. Comput Mater Sci
                    2021;199:110755.  DOI
               87.       Risal S, Zhu W, Guillen P, Sun L. Improving phase prediction accuracy for high entropy alloys with machine learning. Comput Mater
                    Sci 2021;192:110389.  DOI
               88.       Montavon G, Samek W, Müller K. Methods for interpreting and understanding deep neural networks. Digit Signal Process
                    2018;73:1-15.  DOI
               89.       Zhang Y, Wen C, Wang C, et al. Phase prediction in high entropy alloys with a rational selection of materials descriptors and
                    machine learning models. Acta Mater 2020;185:528-39.  DOI
   110   111   112   113   114   115   116   117   118   119   120