Page 119 - Read Online
P. 119

Page 44 of 45                         Mooraj et al. J Mater Inf 2023;3:4  https://dx.doi.org/10.20517/jmi.2022.41

                    element structural alloys. Scr Mater 2017;127:195-200.  DOI
               185.      Miracle DB, Li M, Zhang Z, Mishra R, Flores KM. Emerging capabilities for the high-throughput characterization of structural
                    materials. Annu Rev Mater Res 2021;51:131-64.  DOI
               186.      Pathak S, Kalidindi SR. Spherical nanoindentation stress-strain curves. Mater Sci Eng R Rep 2015;91:1-36.  DOI
               187.      Jiang L, Cao Z, Jie J, et al. Effect of Mo and Ni elements on microstructure evolution and mechanical properties of the CoFeNi VMo
                                                                                                      x  y
                    high entropy alloys. J Alloys Compd 2015;649:585-90.  DOI
               188.      Ma S, Zhang Y. Effect of Nb addition on the microstructure and properties of AlCoCrFeNi high-entropy alloy. Mater Sci Eng A
                    2012;532:480-6.  DOI
               189.      Wang X, Liu Q, Huang Y, Xie L, Xu Q, Zhao T. Effect of Ti content on the microstructure and corrosion resistance of CoCrFeNiTi
                                                                                                         x
                    high entropy alloys prepared by laser cladding. Materials 2020;13:2209.  DOI  PubMed  PMC
               190.      Shun T, Chang L, Shiu M. Microstructures and mechanical properties of multiprincipal component CoCrFeNiTi  alloys. Mater Sci
                                                                                              x
                    Eng A 2012;556:170-4.  DOI
               191.      Tong Y, Chen D, Han B, et al. Outstanding tensile properties of a precipitation-strengthened FeCoNiCrTi  high-entropy alloy at
                                                                                          0.2
                    room and cryogenic temperatures. Acta Mater 2019;165:228-40.  DOI
               192.      Huang K, Kain C, Diaz-vallejo N, Sohn Y, Zhou L. High throughput mechanical testing platform and application in metal additive
                    manufacturing and process optimization. J Manuf Process 2021;66:494-505.  DOI
               193.      Chen R, Qin G, Zheng H, et al. Composition design of high entropy alloys using the valence electron concentration to balance
                    strength and ductility. Acta Mater 2018;144:129-37.  DOI
               194.      Moorehead M, Bertsch K, Niezgoda M, et al. High-throughput synthesis of Mo-Nb-Ta-W high-entropy alloys via additive
                    manufacturing. Mater Design 2020;187:108358.  DOI
               195.      Ren F, Pandolfi R, Van Campen D, Hexemer A, Mehta A. On-the-fly data assessment for high-throughput X-ray diffraction
                    measurements. ACS Comb Sci 2017;19:377-85.  DOI  PubMed
               196.      Long CJ, Bunker D, Li X, Karen VL, Takeuchi I. Rapid identification of structural phases in combinatorial thin-film libraries using
                    X-ray diffraction and non-negative matrix factorization. Rev Sci Instrum 2009;80:103902.  DOI  PubMed
               197.      Datye A, Alexander Kube S, Verma D, Schroers J, Schwarz UD. Accelerated discovery and mechanical property characterization of
                    bioresorbable amorphous alloys in the Mg-Zn-Ca and the Fe-Mg-Zn systems using high-throughput methods. J Mater Chem B
                    2019;7:5392-400.  DOI  PubMed
               198.      Zhao L, Jiang L, Yang L, et al. High throughput synthesis enabled exploration of CoCrFeNi-based high entropy alloys. J Mater Sci
                    Technol 2022;110:269-82.  DOI
               199.      Kaufmann K, Zhu C, Rosengarten AS, Maryanovsky D, Wang H, Vecchio KS. Phase mapping in EBSD using convolutional neural
                    networks. Microsc Microanal 2020;26:458-68.  DOI  PubMed
               200.      Tang Y, Sun S, Lv M, et al. Effect of Ho addition on AC soft magnetic property, microstructure and magnetic domain of
                    FeCoNi(CuAl) Ho  (x = 0-0.07) high-entropy alloys. Intermetallics 2021;135:107216.  DOI
                              0.8  x
               201.      Zhang Q, Xu H, Tan X, et al. The effects of phase constitution on magnetic and mechanical properties of FeCoNi(CuAl) (x = 0-1.2)
                    high-entropy alloys. J Alloys Compd 2017;693:1061-7.  DOI
               202.      Borkar T, Chaudhary V, Gwalani B, et al. A combinatorial approach for assessing the magnetic properties of high entropy alloys: role
                    of Cr in AlCo Cr FeNi. Adv Eng Mater 2017;19:1700048.  DOI
                             x  1-x
               203.      Li P, Wang A, Liu C. Composition dependence of structure, physical and mechanical properties of FeCoNi(MnAl)  high entropy
                                                                                                x
                    alloys. Intermetallics 2017;87:21-6.  DOI
               204.      Taylor CD, Lu P, Saal J, Frankel GS, Scully JR. Integrated computational materials engineering of corrosion resistant alloys. NPJ
                    Mater Degrad 2018:2.  DOI
               205.      Taylor SR. The investigation of corrosion phenomena with high throughput methods: a review. Corros Rev 2011;29:135-51.  DOI
               206.      Muster T, Trinchi A, Markley T, et al. A review of high throughput and combinatorial electrochemistry. Electrochim Acta
                    2011;56:9679-99.  DOI
               207.      Whitfield MJ, Bono D, Wei L, Van Vliet KJ. High-throughput corrosion quantification in varied microenvironments. Corros Sci
                    2014;88:481-6.  DOI
               208.      White P, Smith G, Harvey T, et al. A new high-throughput method for corrosion testing. Corros Sci 2012;58:327-31.  DOI
               209.      Liu J, Liu N, Sun M, Li J, Sohn S, Schroers J. Fast screening of corrosion trends in metallic glasses. ACS Comb Sci 2019;21:666-74.
                    DOI  PubMed
               210.      Xiang C, Fu H, Zhang Z, et al. Effect of Cr content on microstructure and properties of Mo VNbTiCr  high-entropy alloys. J Alloys
                                                                               0.5    x
                    Compd 2020;818:153352.  DOI
               211.      Renčiuková V, Macák J, Sajdl P, Novotný R, Krausová A. Corrosion of zirconium alloys demonstrated by using impedance
                    spectroscopy. J Nucl Mater 2018;510:312-21.  DOI
               212.      Qiu X. Corrosion behavior of Al CrFeCo CuNiTi high-entropy alloy coating in alkaline solution and salt solution. Results Phys
                                          2     x
                    2019;12:1737-41.  DOI
               213.      Qiu X, Liu C. Microstructure and properties of Al CrFeCoCuTiNi  high-entropy alloys prepared by laser cladding. J Alloys Compd
                                                     2         x
                    2013;553:216-20.  DOI
               214.      Hua N, Wang W, Wang Q, et al. Mechanical, corrosion, and wear properties of biomedical Ti-Zr-Nb-Ta-Mo high entropy alloys. J
                    Alloys Compd 2021;861:157997.  DOI
   114   115   116   117   118   119   120   121   122   123   124