Page 447 - Read Online
P. 447

Page 14 of 15                                    Safa. J Cancer Metastasis Treat 2020;6:36  I  http://dx.doi.org/10.20517/2394-4722.2020.55

                   pancreatic tumor growth and metastasis in mice. Gastroenterology 2018;155:1985-98.
               123. Li K, Chen Y, Li A, Tan C, Liu X. Exosomes play roles in sequential processes of tumor metastasis. Int J Cancer 2019;144:1486-95.
               124. Rodriguez-Aznar E, Wiesmüller L, Sainz B Jr, Hermann PC. EMT and stemness-Key players in pancreatic cancer stem cells. Cancers
                   (Basel) 2019;11:1136.
               125. Banys-Paluchowski M, Reinhardt F, Fehm T. Disseminated tumor cells and dormancy in breast cancer progression. Adv Exp Med Biol
                   2020;1220:35-43.
               126. Dianat-Moghadam H, Azizi M, Eslami-S Z, Cortés-Hernández LE, Heidarifard M, et al. The role of circulating tumor cells in the
                   metastatic cascade: biology, technical challenges, and clinical relevance. Cancers (Basel) 2020;12:867.
               127. Aiello NM, Bajor DL, Norgard RJ, Sahmoud A, Bhagwat N, et al. Metastatic progression is associated with dynamic changes in the local
                   microenvironment. Nat Commun 2016;7:12819.
               128. Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol 2014;15:178-96.
               129. Rhim AD, Mirek ET, Aiello NM, Maitra A, Bailey JM, et al. EMT and dissemination precede pancreatic tumor formation. Cell
                   2012;148:349-61.
               130. Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest 2009;119:1420-8.
               131. Forte E, Chimenti I, Rosa P, Angelini F, Pagano F, et al. EMT/MET at the crossroad of stemness, regeneration and oncogenesis: the ying-
                   yang equilibrium recapitulated in cell spheroids. Cancers (Basel) 2017;9;98.
               132. Procacci P, Moscheni C, Sartori P, Sommariva M, Gagliano N. Tumor-stroma cross-talk in human pancreatic ductal adenocarcinoma: a
                   focus on the effect of the extracellular matrix on tumor cell phenotype and invasive potential. Cells 2018;7;158.
               133. Begum A, Ewachiw T, Jung C, Huang A, Norberg KJ, et al. The extracellular matrix and focal adhesion kinase signaling regulate cancer
                   stem cell function in pancreatic ductal adenocarcinoma. PLoS One 2017;12:e0180181.
               134. Pitarresi JR, Rustgi AK. Mechanisms underlying metastatic pancreatic cancer. Adv Exp Med Biol 2019;1164:3-10.
               135. Lawlor RT, Veronese N, Nottegar A, Malleo G, Smith L, et al. Prognostic role of high-grade tumor budding in pancreatic ductal
                   adenocarcinoma: a systematic review and meta-analysis with a focus on epithelial to mesenchymal transition. Cancers (Basel)
                   2019;11;113.
               136. Pelosi E, Castelli G, Testa U. Pancreatic cancer: molecular characterization, clonal evolution and cancer stem cells biomedicines.
                   2017;5;65.
               137. Kai F, Drain AP, Weaver VM. The extracellular matrix modulates the metastatic journey, Dev Cell 2019;49:332-6.
               138. Najafi M, Farhood B, Mortezaee K. Cancer stem cells (CSCs) in cancer progression and therapy. J Cell Physiol 2019;234:8381-95.
               139. Celià-Terrassa T, Kang Y. Distinctive properties of metastasis-initiating cells Genes Dev 2016;30:892-908.
               140. Agnoletto C, Corrà F, Minotti L, Baldassari F, Crudele F, et al. Heterogeneity in circulating tumor cells: the relevance of the stem-cell
                   subset. Cancers (Basel) 2019;11:483.
               141. Giancotti FG. Mechanisms governing metastatic dormancy and reactivation. Cell 2013;155:750-64.
               142. Sosa MS, Bragado P, Aguirre-Ghiso JA. Mechanisms of disseminated cancer cell dormancy: an awakening field. Nat Rev Cancer
                   2014;14:611-22.
               143. Yang L, Shi P, Zhao G, Xu J, Feng W, et al. Targeting cancer stem cell pathways for cancer therapy. Signal Transduct Target Ther.
                   2020;5:8.
               144. Crawford HC, Pasca di Magliano M, Banerjee S. Signaling networks that control cellular plasticity in pancreatic tumorigenesis,
                   progression, and metastasis gastroenterology. Gastroenterology 2019;156:2073-84.
               145. Hindriksen S, Bijlsma MF. Cancer stem cells, EMT, and developmental pathway activation in pancreatic tumors cancers (Basel)
                   2012;4:989-35.
               146. Chen C, Zhao S, Karnad A, Freeman JW. The biology and role of CD44 in cancer progression: therapeutic implications J Hematol Oncol
                   2018;11:64.
               147.  Zhao S, Chen C, Chang K, Karnad A, Jagirdar J, et al. CD44 expression level and isoform contributes to pancreatic cancer cell plasticity,
                   invasiveness and response to therapy. Clin Cancer Res 2016;22:5592-604.
               148. Nielsen MFB, Mortensen MB, Detlefsen S. Typing of pancreatic cancer-associated fibroblasts identifies different subpopulations. World J
                   Gastroenterol 2018;24:4663-78.
               149. Stokes JB1, Adair SJ, Slack-Davis JK, Walters DM, Tilghman RW, et al. Inhibition of focal adhesion kinase by PF-562,271 inhibits the
                   growth and metastasis of pancreatic cancer concomitant with altering the tumor microenvironment. Mol Cancer Ther 2011;10:2135-45.
               150. Miyazaki K, Oyanagi J, Hoshino D, Togo S, Kumagai H, et al. Cancer cell migration on elongate protrusions of fibroblasts in collagen
                   matrix. Sci Rep 2019;9:292.
               151. Sharma N, Nanta R, Sharma J, Gunewardena S, Singh KP. PI3K/AKT/mTOR and sonic hedgehog pathways cooperate together to inhibit
                   human pancreatic cancer stem cell characteristics and tumor growth. Oncotarget 2015;6:32039-60.
               152. Wang F, Li H, Yan XG, Zhou ZW, Yi ZG, et al. Alisertib induces cell cycle arrest and autophagy and suppresses epithelial-to-
                   mesenchymal transition involving PI3K/Akt/mTOR and sirtuin 1-mediated signaling pathways in human pancreatic cancer cells. Drug
                   Des Devel Ther 2015;9:575-601.
               153. Makena DP, Gatla H, Verlekar D, Sukhavasi S, Pandey MK, et al. Wnt/β-Catenin signaling: the culprit in pancreatic carcinogenesis and
                   therapeutic resistance. Int J Mol Sci 2019;20:4242.
               154. Razi E, Radak M, Mahjoubin-Tehran M, Talebi S, Shafiee A, et al. Cancer stem cells as therapeutic targets of pancreatic cancer. Fundam
                   Clin Pharmacol. 2020;34:202-12.
               155. Okada M, Shibuya K, Sato A, Seino S, Suzuki S, et al. Targeting the K-Ras--JNK axis eliminates cancer stem-like cells and prevents
   442   443   444   445   446   447   448   449   450   451   452