Page 446 - Read Online
P. 446

Safa. J Cancer Metastasis Treat 2020;6:36  I  http://dx.doi.org/10.20517/2394-4722.2020.55                                   Page 13 of 15

                   oxidative stress and suppressing sonic hedgehog-Gli-Nanog pathway. Carcinogenesis 2017;38:1047-56.
               91.  Hebrok M. Hedgehog signaling in pancreas development. Mech Dev 2003;120:45-57.
               92.  Yamasaki A, Onishi H, Imaizumi A, Kawamoto M, Fujimura A, et al. Protein-bound polysaccharide-K inhibits Hedgehog signaling
                   through down-regulation of MAML3 and RBPJ transcription under hypoxia, suppressing the malignant phenotype in pancreatic cancer.
                   Anticancer Res 2016;36:3945-52.
               93.  Chiorean EG, Coveler AL. Pancreatic cancer: optimizing treatment options, new, and emerging targeted therapies. Drug Des Devel Ther
                   2015;9:3529-45.
               94.  Lei J, Ma J, Ma Q, Li X, Liu H, et al. Hedgehog signaling regulates hypoxia induced epithelial to mesenchymal transition and invasion in
                   pancreatic cancer cells via a ligand-independent manner. Mol Cancer 2013;12:66.
               95.  Wang F, Ma L, Zhang Z, Liu X, Gao H, et al. Hedgehog signaling regulates epithelial-mesenchymal transition in pancreatic cancer stem-
                   like cells. J Cancer 2016;7:408-17.
               96.  Crawford HC, Pasca di Magliano M, Banerjee S. Signaling networks that control cellular plasticity in pancreatic tumorigenesis,
                   progression, and metastasis. Gastroenterology 2019;156:2073-84.
               97.  Cui J, Jiang W, Wang S, Wang L, Xie K. Role of Wnt/β-catenin signaling in drug resistance of pancreatic cancer. Curr Pharm Des
                   2012;18:2464-71.
               98.  Tanase CP, Neagu AI, Necula LG, Mambet C, Enciu AM, Cancer stem cells: involvement in pancreatic cancer pathogenesis and
                   perspectives on cancer therapeutics. World J Gastroenterol 2014;20:10790-801.
               99.  Yao H, Ashihara E, Maekawa T. Targeting the Wnt/β-catenin signaling pathway in human cancers. Expert Opin Ther Targets
                   2011;15:873-87.
               100. Bailey JM, Alsina J, Rasheed ZA, McAllister FM, Fu YY, et al. DCLK1 marks a morphologically distinct subpopulation of cells with
                   stem cell properties in preinvasive pancreatic cancer. Gastroenterology 2014;146:245-56.
               101. Wang Z, Ahmad A, Li Y, Azmi AS, Miele L, et al. Targeting notch to eradicate pancreatic cancer stem cells for cancer therapy. Anticancer
                   Res 2011;31:1105-13.
               102. Ma J, Xia J, Miele L, Sarkar FH, Wang Z. Notch signaling pathway in pancreatic cancer progression. Pancreat Disord Ther
                   2013;3:1000114.
               103. Güngör C, Hofmann BT, Wolters-Eisfeld G, Bockhorn M. Pancreatic cancer. Br J Pharmacol 2014;171:849-58.
               104. Yabuuchi S, Pai SG, Campbell NR, de Wilde RF, De Oliveira E, et al. Notch signaling pathway targeted therapy suppresses tumor
                   progression and metastatic spread in pancreatic cancer. Cancer Lett 2013;335:41-51.
               105. Wang Y, Jiang F, Jiao K, Ju L, Liu Q, et al. De-methylation of miR-148a by arsenic trioxide enhances sensitivity to chemotherapy via
                   inhibiting the NF-κB pathway and CSC like properties. Exp Cell Res 2020;386:111739.
               106. Zakaria N, Mohd Yusoff N, Zakaria Z, Widera D, Yahaya BH, et al. Inhibition of NF-κB signaling reduces the stemness characteristics of
                   lung cancer stem cells. Front Oncol 2018;8:166.
               107  Zhang L, Wang D, Li Y, Liu Y, Xie X, et al. CCL21/CCR7 axis contributed to CD133+ pancreatic cancer stem-like cell metastasis via
                   EMT and Erk/NF-κB pathway. PLoS One 2016;11:e0158529.
               108. Nomura A, Gupta VK, Dauer P, Sharma NS, Dudeja V, et al. NFκB-mediated Invasiveness in CD133+ pancreatic TICs is regulated by
                   autocrine and paracrine activation of IL1 signaling. Mol Cancer Res 2018;16:162-72.
               109. Zhang Z, Duan Q, Zhao H, Liu T, Wu H, et al. Gemcitabine treatment promotes pancreatic cancer stemness through the Nox/ROS/NF-
                   κB/STAT3 signaling cascade. Cancer Lett 2016;382:53-63.
               110.  Lai SW, Bamodu OA, Tsai WC, Chang YM, Lee WH, et al. The therapeutic targeting of the FGFR1/Src/NF-κB signaling axis inhibits
                   pancreatic ductal adenocarcinoma stemness and oncogenicity. Clin Exp Metastasis 2018;35:663-77.
               111.  Xu H, Zhang L, Qian X, Zhou X, Yan Y, et al. GSK343 induces autophagy and downregulates the AKT/mTOR signaling pathway in
                   pancreatic cancer cells. Exp Ther Med 2019;18:2608-16.
               112.  Zhou HY, Yao XM, Chen XD, Tang JM, Qiao ZG, et al. Mechanism of metformin enhancing the sensitivity of human pancreatic cancer
                   cells to gemcitabine by regulating the PI3K/Akt/mTOR signaling pathway. Eur Rev Med Pharmacol Sci 2019;23:10283-9.
               113.  Meng Q, Liang C, Hua J, Zhang B, Liu J, et al. A miR-146a-5p/TRAF6/NF-kB p65 axis regulates pancreatic cancer chemoresistance:
                   functional validation and clinical significance. Theranostics 2020;10:3967-79.
               114.  Yoshizawa N, Sugimoto K, Tameda M, Inagaki Y, Ikejiri M, et al. miR-3940-5p/miR-8069 ratio in urine exosomes is a novel diagnostic
                   biomarker for pancreaticductal adenocarcinoma. Oncol Lett. 2020;19:2677-84.
               115.  Shams R, Asadzadeh Aghdaei H, Behmanesh A, Sadeghi A, Zali M, et al. MicroRNAs targeting MYC expression: trace of hope for
                   pancreatic cancer therapy. A systematic review. Cancer Manag Res 2020;12:2393-404.
               116.  Han W, Cui H, Liang J, Su X. Role of MicroRNA-30c in cancer progression. J Cancer 2020;11:2593-601.
               117.  Jung DE, Wen J, Oh T, Song SY. Differentially expressed microRNAs in pancreatic cancer stem cells. Pancreas 2011;40:1180-7.
               118.  Ji Q, Hao X, Zhang M, Tang W, Yang M, et al. MicroRNA miR-34 inhibits human pancreatic cancer tumor-initiating cells. PLoS One.
                   2009;4:e6816.
               119.  Wellner U, Schubert J, Burk UC, Schmalhofer O, Zhu F, et al. The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-
                   inhibiting microRNAs. Nat Cell Biol 2009;11:1487-95.
               120. Smith BN, Bhowmick NA. Role of EMT in metastasis and therapy resistance. J Clin Med 2016;5:17.
               121. Beuran M, Negoi I, Paun S, Ion AD, Bleotu C, et al. The epithelial to mesenchymal transition in pancreatic cancer: a systematic review.
                   Pancreatol 2015;15:217-25.
               122. Edderkaoui M, Chheda C, Soufi B, Zayou F, Hu RW, et al. An inhibitor of GSK3B and HDACs kills pancreatic cancer cells and slows
   441   442   443   444   445   446   447   448   449   450   451