Page 445 - Read Online
P. 445

Page 12 of 15                                    Safa. J Cancer Metastasis Treat 2020;6:36  I  http://dx.doi.org/10.20517/2394-4722.2020.55

               57.  Chen WJ, Ho, CC, Chang YL, Chen HY, Lin, CA, et al. Cancer-associated fibroblasts regulate the plasticity of lung cancer stemness via
                   paracrine signalling. Nat Commun 2014;5:3472.
               58.  Korkaya H, Liu S, Wicha MS. Breast cancer stem cells, cytokine networks, and the tumor microenvironment. J Clin Investig
                   2011;121:3804-9.
               59.  Tsuyada A, Chow A, Wu J, Somlo G, Chu P, et al. CCL2 mediates cross-talk between cancer cells and stromal fibroblasts that regulates
                   breast cancer stem cells. Cancer Res 2012;72:2768-79.
               60.  Lonardo E, Hermann PC, Mueller MT, Huber S, Balic, A, et al. Nodal/Activin signaling drives self-renewal and tumorigenicity of
                   pancreatic cancer stem cells and provides a target for combined drug therapy. Cell Stem Cell 2011;9:433-46.
               61.  Shi Y, Gao W, Lytle NK, Huang P, Yuan, X, et al. Targeting LIF-mediated paracrine interaction for pancreatic cancer therapy and
                   monitoring. Nature 2019;569:131-5.
               62.  Chan TS, Shaked Y, Tsai KK. Targeting the interplay between cancer fibroblasts, mesenchymal stem cells, and cancer stem cells in
                   desmoplastic cancers. Front Oncol 2019;9:688.
               63.  Hwang HJ, Oh MS, Lee DW, Kuh HJ. Multiplex quantitative analysis of stroma-mediated cancer cell invasion, matrix remodeling, and
                   drug response in a 3D co-culture model of pancreatic tumor spheroids and stellate cells. J Exp Clin Cancer Res 2019;38:258.
               64.  Gieniec KA, Butler LM, Worthley DL, Woods SL. Cancer-associated fibroblasts-heroes or villains? Br J Cancer 2019;121:293-302.
               65.   Liu T, Zhou L, Li D, Andl T, Zhang Y. Cancer-associated fibroblasts build and secure the tumor microenvironment. Front Cell Dev Biol
                   2019;7:60.
               66.  Yin Z, Jiang K, Li R, Dong C, Wang L. Multipotent mesenchymal stromal cells play critical roles in hepatocellular carcinoma initiation,
                   progression and therapy. Mol Cancer 2018;17:178.
               67.  Sainz B Jr, Alcala S, Garcia E, Sanchez-Ripoll Y, Azevedo MM, et al. Microenvironmental hCAP-18/LL-37 promotes pancreatic ductal
                   adenocarcinoma by activating its cancer stem cell compartment. Gut 2015;64:1921-35.
               68.   Iovanna JL, Closa D. Factors released by the tumor far microenvironment are decisive for pancreatic adenocarcinoma development and
                   progression. Oncoimmunology 2017;6:e1358840.
               69.  Sainz B Jr, Martin B, Tatari M, Heeschen C, Guerra, S. ISG15 is a critical microenvironmental factor for pancreatic cancer stem cells.
                   Cancer Res 2014;74:7309-20.
               70.  Benson DD, Meng X, Fullerton DA, Moore EE, Lee JH, et al. Activation state of stromal inflammatory cells in murine metastatic
                   pancreatic adenocarcinoma. Am J Physiol Regul Integr Comp Physiol 2012;302:1067-75.
               71.  Waghray M, Yalamanchili M, Dziubinski M, Zeinali M, Erkkinen M, et al. GM-CSF mediates mesenchymal-epithelial cross-talk in
                   pancreatic cancer. Cancer Discov 2016;6:886-99.
               72.  Osipov A, Saung MT, Zheng L, Murphy AG. Small molecule immunomodulation: the tumor microenvironment and overcoming immune
                   escape. J Immunother Cancer 2019;7:224.
               73.  Sanford DE, Belt BA, Panni RZ, Mayer A, Deshpande AD, et al. Inflammatory monocyte mobilization decreases patient survival in
                   pancreatic cancer: A role for targeting the CCL2/CCR2 axis. Clin Cancer Res 2013.19:3404-15.
               74.  Mitchem JB, Brennan DJ, Knolho BL, Belt BA, Zhu Y, et al. Targeting tumor-infiltrating macrophages decreases tumor-initiating cells,
                   relieves immunosuppression, and improves chemotherapeutic responses. Cancer Res 2013;73:1128-41.
               75.  Jones EA, Kinsey SE, English A, Jones RA, Straszynski L, et al. Isolation and characterization of bone marrow multipotential
                   mesenchymal progenitor cells. Arthritis Rheum 2002;46:3349-60.
               76.  Kum JJ, Khan ZA. Propranolol inhibits growth of hemangioma-initiating cells but does not induce apoptosis. Pediatr Res 2014;75:381-8.
               77.  Kaplan RN, Psaila B, Lyden D. Bone marrow cells in the ‘pre-metastatic niche’: within bone and beyond. Cancer Metastasis Rev
                   2006;25:521-9.
               78.  Shao H, Moller M, Wang D, Ting A, Boulina M, et al. A novel stromal fibroblast-modulated 3D tumor spheroid model for studying
                   tumor-stroma interaction and drug discovery. J Vis Exp 2020; doi: 10.3791/60660.
               79.   Wang CC, Zhao YM, Wang HY, Zhao YP. New insight into the role of exosomes in pancreatic cancer. Ann Clin Lab Sci 2019;49:385-392.
               80.  Ercan G, Karlitepe A, Ozpolat B. Pancreatic cancer stem cells and therapeutic approaches. Anticancer Res 2017;37:2761-75.
               81.  Venkatesh V, Nataraj R, Thangaraj GS, Karthikeyan M, Gnanasekaran A, et al. Targeting Notch signalling pathway of cancer stem cells.
                   Stem Cell Investig 2018;5:5.
               82.  Xu YF, Hannafon BN, Ding WQ. MicroRNA regulation of human pancreatic cancer stem cells. Stem Cell Investig 2017;4:5.
               83.  Bimonte S, Barbieri A, Leongito M, Palma G, Del Vecchio V, et al. The role of miRNAs in the regulation of pancreatic cancer stem cells.
                   Stem Cells Int 2016;2016:8352684.
               84.  Lee HM, Hwang KA, Choi KC. Diverse pathways of epithelial mesenchymal transition related with cancer progression and metastasis and
                   potential effects of endocrine disrupting chemicals on epithelial mesenchymal transition process. Mol Cell Endocrinol 2017;457:103-13.
               85.  Chen X, Xiao W, Liu X, Zeng M, Luo L, et al. Blockade of Jagged/Notch pathway abrogates transforming growth factor β2-induced
                   epithelial-mesenchymal transition in human retinal pigment epithelium cells. Curr Mol Med 2014;14:523-34.
               86.  Wang Y, Shi J, Chai K, Ying X, Zhou BP. The role of Snail in EMT and tumorigenesis. Curr Cancer Drug Targets 2013;13:963-72.
               87.   Jiang X, Hao HX, Growney JD, Woolfenden S, Bottiglio C, et al. Inactivating mutations of RNF43 confer Wnt dependency in pancreatic
                   ductal adenocarcinoma. Proc Natl Acad Sci USA 2013;110:12649-54.
               88.  Katoh M. Canonical and non-canonical WNT signaling in cancer stem cells and their niches: Cellular heterogeneity, omics
                   reprogramming, targeted therapy and tumor plasticity. Int J Oncol 2017;51:1357-69.
               89.  Onishi H, Katano M. Hedgehog signaling pathway as a new therapeutic target in pancreatic cancer. World J Gastroenterol 201;20:2335-42.
               90.  Ma Y, Yu W, Shrivastava A, Alemi F, Lankachandra K, et al. Sanguinarine inhibits pancreatic cancer stem cell characteristics by inducing
   440   441   442   443   444   445   446   447   448   449   450