Page 95 - Read Online
P. 95
Page 24 of 26 Skorupan et al. J Cancer Metastasis Treat 2023;9:5 https://dx.doi.org/10.20517/2394-4722.2022.106
116. Toll AD, Hruban RH, Ali SZ. Acinar cell carcinoma of the pancreas: clinical and cytomorphologic characteristics. Korean J Pathol
2013;47:93-9. DOI PubMed PMC
117. Klimstra DS, Rosai J, Heffess CS. Mixed acinar-endocrine carcinomas of the pancreas. Am J Surg Pathol 1994;18:765-78. DOI
PubMed
118. Abraham SC, Wu TT, Hruban RH, et al. Genetic and immunohistochemical analysis of pancreatic acinar cell carcinoma: frequent
allelic loss on chromosome 11p and alterations in the APC/beta-catenin pathway. Am J Pathol 2002;160:953-62. DOI PubMed
PMC
119. Klimstra DS, Adsay V. Acinar neoplasms of the pancreas-A summary of 25 years of research. Semin Diagn Pathol 2016;33:307-18.
DOI PubMed
120. Thompson ED, Wood LD. Pancreatic neoplasms with acinar differentiation: a review of pathologic and molecular features. Arch
Pathol Lab Med 2020;144:808-15. DOI PubMed
121. La Rosa S, Franzi F, Marchet S, et al. The monoclonal anti-BCL10 antibody (clone 331.1) is a sensitive and specific marker of
pancreatic acinar cell carcinoma and pancreatic metaplasia. Virchows Arch 2009;454:133-42. DOI PubMed
122. Hosoda W, Sasaki E, Murakami Y, Yamao K, Shimizu Y, Yatabe Y. BCL10 as a useful marker for pancreatic acinar cell carcinoma,
especially using endoscopic ultrasound cytology specimens. Pathol Int 2013;63:176-82. DOI PubMed
123. Said S, Kurtin PJ, Nasr SH, et al. Carboxypeptidase A1 and regenerating islet-derived 1α as new markers for pancreatic acinar cell
carcinoma. Hum Pathol 2020;103:120-6. DOI PubMed
124. Uhlig R, Contreras H, Weidemann S, et al. Carboxypeptidase A1 (CPA1) immunohistochemistry is highly sensitive and specific for
acinar cell carcinoma (ACC) of the pancreas. Am J Surg Pathol 2022;46:97-104. DOI PubMed PMC
125. Jiao Y, Yonescu R, Offerhaus GJ, et al. Whole-exome sequencing of pancreatic neoplasms with acinar differentiation. J Pathol
2014;232:428-35. DOI PubMed PMC
126. Chmielecki J, Hutchinson KE, Frampton GM, et al. Comprehensive genomic profiling of pancreatic acinar cell carcinomas identifies
recurrent RAF fusions and frequent inactivation of DNA repair genes. Cancer Discov 2014;4:1398-405. DOI
127. Jäkel C, Bergmann F, Toth R, et al. Genome-wide genetic and epigenetic analyses of pancreatic acinar cell carcinomas reveal
aberrations in genome stability. Nat Commun 2017;8:1323. DOI PubMed PMC
128. Furukawa T, Sakamoto H, Takeuchi S, et al. Whole exome sequencing reveals recurrent mutations in BRCA2 and FAT genes in
acinar cell carcinomas of the pancreas. Sci Rep 2015;5:8829. DOI PubMed PMC
129. Chou A, Kim Y, Samra JS, Pajic M, Gill AJ. BRAF gene rearrangements can be identified by FISH studies in pancreatic acinar cell
carcinoma. Pathology 2018;50:345-8. DOI PubMed
130. Prall OWJ, Nastevski V, Xu H, et al. RAF1 rearrangements are common in pancreatic acinar cell carcinomas. Mod Pathol
2020;33:1811-21. DOI PubMed
131. Chou A, Brown IS, Kumarasinghe MP, et al. RET gene rearrangements occur in a subset of pancreatic acinar cell carcinomas. Mod
Pathol 2020;33:657-64. DOI PubMed
132. Gupta M, Sherrow C, Krone ME, et al. Targeting the NTRK fusion gene in pancreatic acinar cell carcinoma: a case report and review
of the literature. J Natl Compr Canc Netw 2021;19:10-5. DOI PubMed PMC
133. Liu W, Shia J, Gönen M, Lowery MA, O’Reilly EM, Klimstra DS. DNA mismatch repair abnormalities in acinar cell carcinoma of
the pancreas: frequency and clinical significance. Pancreas 2014;43:1264-70. DOI PubMed
134. Kryklyva V, Haj Mohammad N, Morsink FHM, et al. Pancreatic acinar cell carcinoma is associated with BRCA2 germline
mutations: a case report and literature review. Cancer Biol Ther 2019;20:949-55. DOI PubMed PMC
135. Lee JH, Park SJ, Hariharasudhan G, et al. ID3 regulates the MDC1-mediated DNA damage response in order to maintain genome
stability. Nat Commun 2017;8:903. DOI
136. Bakr A, Hey J, Sigismondo G, et al. ID3 promotes homologous recombination via non-transcriptional and transcriptional mechanisms
and its loss confers sensitivity to PARP inhibition. Nucleic Acids Res 2021;49:11666-89. DOI PubMed PMC
137. Xu J, Palestino Dominguez M, Alewine C. Loss of ID3 in pancreatic cancer cells increases DNA damage without impairing MDC1
recruitment to the nuclear foci. Cancer Commun 2022;42:269-72. DOI PubMed PMC
138. La Rosa S, Bernasconi B, Frattini M, et al. TP53 alterations in pancreatic acinar cell carcinoma: new insights into the molecular
pathology of this rare cancer. Virchows Arch 2016;468:289-96. DOI PubMed
139. Matsuno S, Egawa S, Fukuyama S, et al. Pancreatic cancer registry in japan: 20 years of experience. Pancreas 2004;28:219-30. DOI
PubMed
140. Mustafa S, Hruban RH, Ali SZ. Acinar cell carcinoma of the pancreas: a clinicopathologic and cytomorphologic review. J Am Soc
Cytopathol 2020;9:586-95. DOI PubMed
141. Sridharan V, Mino-Kenudson M, Cleary JM, et al. Pancreatic acinar cell carcinoma: a multi-center series on clinical characteristics
and treatment outcomes. Pancreatology 2021:1119-26. DOI PubMed
142. Schmidt CM, Matos JM, Bentrem DJ, Talamonti MS, Lillemoe KD, Bilimoria KY. Acinar cell carcinoma of the pancreas in the
United States: prognostic factors and comparison to ductal adenocarcinoma. J Gastrointest Surg 2008;12:2078-86. DOI PubMed
143. Petrova E, Wellner J, Nording AK, et al. Survival outcome and prognostic factors for pancreatic acinar cell carcinoma: retrospective
analysis from the german cancer registry group. Cancers 2021;13:6121. DOI PubMed PMC
144. Duorui N, Shi B, Zhang T, et al. The contemporary trend in worsening prognosis of pancreatic acinar cell carcinoma: a population-
based study. PLoS One 2020;15:e0243164. DOI PubMed PMC