Page 93 - Read Online
P. 93
Page 22 of 26 Skorupan et al. J Cancer Metastasis Treat 2023;9:5 https://dx.doi.org/10.20517/2394-4722.2022.106
56. Lu BC, Wang C, Yu JH, Shen ZH, Yang JH. A huge adenosquamous carcinoma of the pancreas with sarcomatoid change: an unusual
case report. World J Gastroenterol 2014;20:16381-6. DOI PubMed PMC
57. Silvestris N, Brunetti O, Pinto R, et al. Immunological mutational signature in adenosquamous cancer of pancreas: an exploratory
study of potentially therapeutic targets. Expert Opin Ther Targets 2018;22:453-61. DOI PubMed
58. Tanigawa M, Naito Y, Akiba J, et al. PD-L1 expression in pancreatic adenosquamous carcinoma: PD-L1 expression is limited to the
squamous component. Pathol Res Pract 2018;214:2069-74. DOI PubMed
59. Motojima K, Tomioka T, Kohara N, Tsunoda T, Kanematsu T. Immunohistochemical characteristics of adenosquamous carcinoma of
the pancreas. J Surg Oncol 1992;49:58-62. DOI PubMed
60. Borazanci E, Millis SZ, Korn R, et al. Adenosquamous carcinoma of the pancreas: molecular characterization of 23 patients along
with a literature review. World J Gastrointest Oncol 2015;7:132-40. DOI PubMed PMC
61. Fang Y, Su Z, Xie J, et al. Genomic signatures of pancreatic adenosquamous carcinoma (PASC). J Pathol 2017;243:155-9. DOI
PubMed
62. Lenkiewicz E, Malasi S, Hogenson TL, et al. Genomic and epigenomic landscaping defines new therapeutic targets for
adenosquamous carcinoma of the pancreas. Cancer Res 2020;80:4324-34. DOI PubMed PMC
63. Matsuzaka S, Karasaki H, Ono Y, et al. Tracking the clonal evolution of adenosquamous carcinoma, a rare variant of intraductal
papillary mucinous neoplasm of the pancreas. Pancreas 2016;45:915-8. DOI PubMed
64. Liu C, Karam R, Zhou Y, et al. The UPF1 RNA surveillance gene is commonly mutated in pancreatic adenosquamous carcinoma.
Nat Med 2014;20:596-8. DOI PubMed PMC
65. Witkiewicz AK, McMillan EA, Balaji U, et al. Whole-exome sequencing of pancreatic cancer defines genetic diversity and
therapeutic targets. Nat Commun 2015;6:6744. DOI PubMed PMC
66. Polaski JT, Udy DB, Escobar-Hoyos LF, et al. The origins and consequences of UPF1 variants in pancreatic adenosquamous
carcinoma. Elife 2021;2021:10. DOI PubMed PMC
67. Dey P, Li J, Zhang J, et al. Oncogenic KRAS-driven metabolic reprogramming in pancreatic cancer cells utilizes cytokines from the
tumor microenvironment. Cancer Discov 2020;10:608-25. DOI PubMed PMC
68. Maddipati R, Norgard RJ, Baslan T, et al. MYC levels regulate metastatic heterogeneity in pancreatic adenocarcinoma. Cancer
Discov 2022;12:542-61. DOI PubMed PMC
69. Muthalagu N, Monteverde T, Raffo-Iraolagoitia X, et al. Repression of the type I interferon pathway underlies MYC- and KRAS-
dependent evasion of NK and B cells in pancreatic ductal adenocarcinoma. Cancer Discov 2020;10:872-87. DOI PubMed PMC
70. Shukla SK, Gunda V, Abrego J, et al. MUC16-mediated activation of mTOR and c-Myc reprograms pancreatic cancer metabolism.
Oncotarget 2015;6:19118-31. DOI PubMed PMC
71. Karasinska JM, Topham JT, Kalloger SE, et al. Altered gene expression along the glycolysis-cholesterol synthesis axis is associated
with outcome in pancreatic cancer. Clin Cancer Res 2020;26:135-46. DOI PubMed
72. Somerville TDD, Xu Y, Miyabayashi K, et al. TP63-mediated enhancer reprogramming drives the squamous subtype of pancreatic
ductal adenocarcinoma. Cell Rep 2018;25:1741-1755.e7. DOI PubMed PMC
73. Hamdan FH, Johnsen SA. DeltaNp63-dependent super enhancers define molecular identity in pancreatic cancer by an interconnected
transcription factor network. Proc Natl Acad Sci USA 2018;115:E12343-52. DOI PubMed PMC
74. Andricovich J, Perkail S, Kai Y, Casasanta N, Peng W, Tzatsos A. Loss of KDM6A activates super-enhancers to induce gender-
specific squamous-like pancreatic cancer and confers sensitivity to BET inhibitors. Cancer Cell 2018;33:512-526.e8. DOI PubMed
PMC
75. Kalisz M, Bernardo E, Beucher A, et al. HNF1A recruits KDM6A to activate differentiated acinar cell programs that suppress
pancreatic cancer. EMBO J 2020;39:e102808. DOI PubMed PMC
76. Kloesch B, Ionasz V, Paliwal S, et al. A GATA6-centred gene regulatory network involving HNFs and ΔNp63 controls plasticity and
immune escape in pancreatic cancer. Gut 2022;71:766-77. DOI PubMed PMC
77. Imaoka H, Shimizu Y, Mizuno N, et al. Clinical characteristics of adenosquamous carcinoma of the pancreas: a matched case-control
study. Pancreas 2014;43:287-90. DOI PubMed
78. Kaiser J, Hinz U, Mayer P, et al. Clinical presentation and prognosis of adenosquamous carcinoma of the pancreas - Matched-pair
analysis with pancreatic ductal adenocarcinoma. Eur J Surg Oncol 2021;47:1734-41. DOI PubMed
79. Boyd CA, Benarroch-Gampel J, Sheffield KM, Cooksley CD, Riall TS. 415 patients with adenosquamous carcinoma of the pancreas:
a population-based analysis of prognosis and survival. J Surg Res 2012;174:12-9. DOI PubMed PMC
80. Hester CA, Augustine MM, Choti MA, et al. Comparative outcomes of adenosquamous carcinoma of the pancreas: an analysis of the
National Cancer Database. J Surg Oncol 2018;118:21-30. DOI PubMed
81. Katz MH, Taylor TH, Al-Refaie WB, et al. Adenosquamous versus adenocarcinoma of the pancreas: a population-based outcomes
analysis. J Gastrointest Surg 2011;15:165-74. DOI PubMed PMC
82. Yang Z, Shi G, Zhang P. Development and validation of nomograms to predict overall survival and cancer-specific survival in
patients with pancreatic adenosquamous carcinoma. Front Oncol 2022;12:831649. DOI PubMed PMC
83. Yoshida Y, Kobayashi S, Ueno M, et al. Efficacy of chemotherapy for patients with metastatic or recurrent pancreatic
adenosquamous carcinoma: a multicenter retrospective analysis. Pancreatology 2022;22:1159-66. DOI PubMed
84. Lozano MD, Panizo A, Sola IJ, Pardo-Mindán FJ. FNAC guided by computed tomography in the diagnosis of primary pancreatic
adenosquamous carcinoma: a report of three cases. Acta Cytol 1998;42:1451-4. DOI PubMed