Page 17 - Read Online
P. 17
Imaging and Radiotherapy of Gliomas. ACS Appl Mater Interfaces and therapeutic applications: current status and future design. Chang Gung
2015;7:19798-808. Med J 2012;35:125-39.
116. Zhao L, Shi X, Zhao J. Chlorotoxin-conjugated nanoparticles for targeted 136. Chen YC, Chiang CF, Wu SK, Chen LF, Hsieh WY, Lin WL. Targeting
imaging and therapy of glioma. Curr Top Med Chem 2015;15:1196-208. microbubbles-carrying TGFbeta1 inhibitor combined with ultrasound
117. Wang X, Guo Z. Chlorotoxin-conjugated onconase as a potential anti- sonication induce BBB/BTB disruption to enhance nanomedicine
glioma drug. Oncol Lett 2015;9:1337-42. treatment for brain tumors. J Control Release 2015;211:53-62.
118. Wang H, Gu W, Xiao N, Ye L, Xu Q. Chlorotoxin-conjugated graphene 137. Liao AH, Chou HY, Hsieh YL, Hsu SC, Wei KC, Liu HL. Enhanced
oxide for targeted delivery of an anticancer drug. Int J Nanomedicine Therapeutic Epidermal Growth Factor Receptor (EGFR) Antibody Delivery
2014;9:1433-42. via Pulsed Ultrasound with Targeting Microbubbles for Glioma Treatment.
119. Cheng Y, Zhao J, Qiao W, Chen K. Recent advances in diagnosis and Journal of Medical and Biological Engineering 2015;35:156-64.
treatment of gliomas using chlorotoxin-based bioconjugates. Am J Nucl 138. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function.
Med Mol Imaging 2014;4:385-405.
120. Zhang M, Ellenbogen RG, Kievit F, Silber JR, Stephen Z, Veiseh O. Cell 2004;116:281-97.
Nanoparticle for targeting brain tumors and delivery of o6-benzylguanine. 139. Iwakawa HO, Tomari Y. The Functions of MicroRNAs: mRNA
In: University of Washington through its Center for Commercialization; Decay and Translational Repression. Trends Cell Biol 201510.1016/j.
2014. (ISBN No. US20140286872 A1) tcb.2015.07.011.
121. Veiseh O, Kievit FM, Fang C, Mu N, Jana S, Leung MC, Mok H, 140. Alvarez-Garcia I, Miska EA. MicroRNA functions in animal development
Ellenbogen RG, Park JO, Zhang M. Chlorotoxin bound magnetic and human disease. Development 2005;132:4653-62.
nanovector tailored for cancer cell targeting, imaging, and siRNA delivery. 141. LeBlanc VC, Morin P. Exploring miRNA-Associated Signatures with
Biomaterials 2010;31:8032-42. Diagnostic Relevance in Glioblastoma Multiforme and Breast Cancer
122. Kievit FM, Veiseh O, Fang C, Bhattarai N, Lee D, Ellenbogen RG, Zhang Patients. J Clin Med 2015;4:1612-30.
M. Chlorotoxin labeled magnetic nanovectors for targeted gene delivery to 142. Hummel R, Maurer J, Haier J. MicroRNAs in brain tumors : a new
glioma. ACS Nano 2010;4:4587-94. diagnostic and therapeutic perspective? Mol Neurobiol 2011;44:223-34.
123. Butte PV, Mamelak A, Parrish-Novak J, Drazin D, Shweikeh F, Gangalum 143. Novakova J, Slaby O, Vyzula R, Michalek J. MicroRNA involvement in
PR, Chesnokova A, Ljubimova JY, Black K. Near-infrared imaging of glioblastoma pathogenesis. Biochem Biophys Res Commun 2009;386:1-5.
brain tumors using the Tumor Paint BLZ-100 to achieve near-complete 144. Chan JA, Krichevsky AM, Kosik KS. MicroRNA-21 is an antiapoptotic
resection of brain tumors. Neurosurg Focus 2014;36:E1. factor in human glioblastoma cells. Cancer Res 2005;65:6029-33.
124. Fidel J, Kennedy KC, Dernell WS, Hansen S, Wiss V, Stroud MR, 145. Møller HG, Rasmussen AP, Andersen HH, Johnsen KB, Henriksen
Molho JI, Knoblaugh SE, Meganck J, Olson JM, Rice B, Parrish- M, Duroux M. A Systematic Review of MicroRNA in Glioblastoma
Novak J. Preclinical Validation of the Utility of BLZ-100 in Providing Multiforme: Micro-modulators in the Mesenchymal Mode of Migration
Fluorescence Contrast for Imaging Spontaneous Solid Tumors. Cancer and Invasion. Molecular Neurobiology 2013;47:131-44.
Res 2015;75:4283-91.
125. Rodriguez-Devora JI, Ambure S, Shi Z-D, Yuan Y, Sun W, Xu T. 146. Park JB, Lee SH, Park EK, Lee D, Yang HS, Yoo H, Kim HJ, Kim TH,
Physically facilitating drug-delivery systems. Ther Deliv 2012;3:125-39. Kwak HJ. Anti-cancer composition comprising microrna molecules. In:
126. Davalos RV, Rossmeisl JH, Garcia PA. Acute blood-brain barrier National Cancer Center; 2011. (ISBN No. US20110124712 A1)
disruption using electrical energy based therapy. In: Virginia Tech 147. Keefe AD, Pai S, Ellington A. Aptamers as therapeutics. Nat Rev Drug
Intellectual Properties, Inc.; 2014. (ISBN No. US20140039489A1) Discov 2010;9:537-50.
127. Qiu LB, Ding GR, Li KC, Wang XW, Zhou Y, Zhou YC, Li YR, Guo GZ. 148. Rich JN, Kim Y, Hjelmeland A. Aptamers for tumor initiating cells. In: The
The role of protein kinase C in the opening of blood-brain barrier induced Cleveland Clinic Foundation; 2014. (ISBN No. WO2014121256 A1)
by electromagnetic pulse. Toxicology 2010;273:29-34. 149. Bloembergen S, McLennan IJ, Jones N, Wagner R, Shermon AKG,
128. Braun S, Oppermann H, Mueller A, Renner C, Hovhannisyan A, Baran- Elsayed AR, Liu J. Aptamer bioconjugate drug delivery device. In:
Schmidt R, Gebhardt R, Hipkiss A, Thiery J, Meixensberger J, Gaunitz Ecosynthetix Ltd.; 2013. (ISBN No. US 20130090467 A1)
F. Hedgehog signaling in glioblastoma multiforme. Cancer Biol Ther 150. Jatariu A, Peptu C, Popa M, Indrei A. Micro- and nanoparticles--medical
2012;13:487-95. applications. Rev Med Chir Soc Med Nat Iasi 2009;113:1160-9.
129. Akhtari M, Engel J. Use of functionalized magnetic nanoparticles in cancer 151. Burgess R. Medical applications of nanoparticles and nanomaterials. Stud
detection and treatment. In: The Regents Of The University Of California; Health Technol Inform 2009;149:257-83.
2015. (ISBN No. US 9011913 B2) 152. Irache JM. [Nanomedicine: nanoparticles with medical applications]. An
130. Yang VC, David AE. Compositions and methods for targeting tumors. Sist Sanit Navar 2008;31:7-10.
In: The Regents Of The University Of Michigan; 2011. (ISBN No. 153. Dusinska M, Dusinska M, Fjellsbo L, Magdolenova Z, Rinna A, Runden
US20110054236 A1) Pran E, Bartonova A, Heimstad E, Harju M, Tran L, Ross B, Juillerat L,
131. Dixit S, Miller K, Zhu Y, McKinnon E, Novak T, Kenney ME, Broome Halamoda Kenzaui B, Marano F, Boland S, Guadaginini R, Saunders
AM. Dual Receptor-Targeted Theranostic Nanoparticles for Localized M, Cartwright L, Carreira S, Whelan M, Kelin C, Worth A, Palosaari T,
Delivery and Activation of Photodynamic Therapy Drug in Glioblastomas. Burello E, Housiadas C, Pilou M, Volkovova K, Tulinska J, Kazimirova A,
Mol Pharm 2015;12:3250-60. Barancokova M, Sebekova K, Hurbankova M, Kovacikova Z, Knudsen
132. Liu H-L, Fan C-H, Ting C-Y, Yeh C-K. Combining Microbubbles and
Ultrasound for Drug Delivery to Brain Tumors: Current Progress and L, Poulsen M, Mose T, Vila M, Gombau L, Fernandez B, Castell J,
Overview. Theranostics 2014;4:432-44. Marcomini A, Pojana G, Bilanicova D, Vallotto D. Testing strategies for
133. Hynynen K, McDannold N, Sheikov NA, Jolesz FA, Vykhodtseva N. the safety of nanoparticles used in medical applications. Nanomedicine
Local and reversible blood-brain barrier disruption by noninvasive focused 2009;4:605-7.
ultrasound at frequencies suitable for trans-skull sonications. Neuroimage 154. to-BBB technologies BV. Company restarting as 2-BBB Medicines BV.
2005;24:12-20. In. The Netherlands; 2015.
134. Blomley MJK, Cooke JC, Unger EC, Monaghan MJ, Cosgrove DO. 155. TEDxMaastricht. Brain Train. Effective Brain Cancer Treatment: Pieter
Microbubble contrast agents: a new era in ultrasound. BMJ : British Gaillard at TEDxMaastricht. In: TEDxMaastricht, editor: Gaillard, P.; 2013.
Medical Journal 2001;322:1222-5. 156. Lammers T, Hennink WE, Storm G. Tumour-targeted nanomedicines:
135. Kang ST, Yeh CK. Ultrasound microbubble contrast agents for diagnostic principles and practice. Br J Cancer 2008;99:392-7.
122
Journal of Cancer Metastasis and Treatment ¦ Volume 2 ¦ March 15, 2016 ¦