Page 16 - Read Online
P. 16
brain? Int J Pharm 2005;298:274-92. 98. Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L. Anthracyclines:
76. Wesselinova D. Current major cancer targets for nanoparticle systems. molecular advances and pharmacologic developments in antitumor
Curr Cancer Drug Targets 2011;11:164-83. activity and cardiotoxicity. Pharmacol Rev 2004;56:185-229.
77. Adams ML, Lavasanifar A, Kwon GS. Amphiphilic block copolymers for 99. Gaillard PJ, Appeldoorn CCM, Dorland R, van Kregten J, Manca F, Vugts
drug delivery. J Pharm Sci 2003;92:1343-55. DJ, Windhorst B, van Dongen GAMS, de Vries HE, Maussang D, van
78. Li AJ, Zheng YH, Liu GD, Liu WS, Cao PC, Bu ZF. Efficient delivery Tellingen O. Pharmacokinetics, Brain Delivery, and Efficacy in Brain
of docetaxel for the treatment of brain tumors by cyclic RGD-tagged Tumor-Bearing Mice of Glutathione Pegylated Liposomal Doxorubicin
polymeric micelles. Mol Med Rep 2015;11:3078-86. (2B3-101). PLoS One 2014;9:e82331.
79. Krebs MD. Biodegradable polymers for delivery of therapeutic agents. In: 100. Gaillard PJ, Kerklaan BM, Aftimos P, Altintas S, Jager A, Gladdines W,
Colorado School Of Mines; 2014. (ISBN No. US20140377366 A1) Lonnqvist F, Soetekouw P, Verheul H, Awada A, Schellens J, Brandsma
80. Bae YH, Na K, Lee ES. PH-sensitive polymeric micelles for drug delivery. D. Abstract CT216: Phase I dose escalating study of 2B3-101, glutathione
In: University Of Utah Research Foundation; 2010. (ISBN No. US PEGylated liposomal doxorubicin, in patients with solid tumors and brain
7659314 B2) metastases or recurrent malignant glioma. Cancer Res 2014;74:CT216.
81. Zhou Z, Patel TR, Piepmeier JM, Saltzman WM. Highly penetrative 101. Nektar Therapeutics. Etirinotecan Pegol (NKTR-102): A Next-Generation
nanocarriers for treatment of cns disease. In: Yale University; 2015. (ISBN Topoisomerase I Inhibitor Being Developed in Breast, Ovarian and
No. US20150118311 A1) Colorectal Cancers. In. Etirinotecan Pegol (NKTR-102). USA: “Nektar
82. Wu XY, Shalviri A. Polymeric nanoparticles useful in theranostics. In: Therapeutics”; 2013.
The Governing Council Of The University Of Toronto; 2013. (ISBN No. 102. Nagpal S, Recht CK, Bertrand S, Thomas RP, Ajlan A, Pena J, Gershon
WO2013127004 A1) M, Coffey G, Kunz PL, Li G, Recht LD. Phase II pilot study of single-
83. Yerushalmi N, Kredo-Russo S, Lithwick YG, Satchi-Fainaro R, Ofek agent etirinotecan pegol (NKTR-102) in bevacizumab-resistant high grade
P. Nanocarrier system for micrornas and uses thereof. In: Rosetta glioma. Neuro Oncol 2015;123:277-82.
Genomics Ltd. and Ramot At Tel-Aviv University Ltd; 2014. (ISBN No. 103. Hermanson GT. Chapter 1 - Introduction to Bioconjugation. In:
WO2014203189 A1) editor~editors, editor. Bioconjugate Techniques. Boston:Academic
84. Tour JM, Berlin J, Marcano D, Baskin DS, Sharpe MA. Targeted Press;2013.p.1-125.
nanovectors and their use for treatment of brain tumors. In: The Methodist 104. Duncan R. Polymer conjugates as anticancer nanomedicines. Nat Rev
Hospital Research Institute & William Marsh Rice University; 2014. Cancer 2006;6:688-701.
(ISBN No. US 20140154269 A1) 105. Bacha JA, Brown D, Dunn S, Steinø A. Use of dianhydrogalactitol and
85. Muller LK, Landfester K. Natural liposomes and synthetic polymeric analogs and derivatives thereof to treat glioblastoma multiforme. In: Del
structures for biomedical applications. Biochem Biophys Res Commun Mar Pharmaceuticals; 2014. (ISBN No. US20140221442 A1)
2015;468:411-8. 106. Tschoepe M, Kaleta K, Kumar V. Anti-egfr antibody drug conjugate
86. Lai F, Fadda AM, Sinico C. Liposomes for brain delivery. Expert Opinion formulations. In: Abbvie Deutschland Gmbh & Co.Kg, Abbvie Inc.; 2014.
on Drug Delivery 2013;10:1003-22. (ISBN No. WO2014143765 A1)
87. Xiang Y, Liang L, Wang X, Wang J, Zhang X, Zhang Q. Chloride channel- 107. Adair JH, Kester M, Smith JP, Altinoglu EI, Barth BM, Kaiser JM, Matters
mediated brain glioma targeting of chlorotoxin-modified doxorubicine- GL, Mcgovern C, Morgan TT, Sharma R. Bioconjugation of calcium
loaded liposomes. J Control Release 2011;152:402-10. phosphosilicate nanoparticles for selective targeting of cells in vivo. In:
88. Li XY, Zhao Y, Sun MG, Shi JF, Ju RJ, Zhang CX, Li XT, Zhao WY, The Pennsylvania State Research Foundation; 2011. (ISBN No. WO
Mu LM, Zeng F, Lou JN, Lu WL. Multifunctional liposomes loaded 2011057216 A1)
with paclitaxel and artemether for treatment of invasive brain glioma. 108. Hutchison R, Vitalis TZ, Gabathuler R. P97-antibody conjugates and
Biomaterials 2014;35:5591-604. methods of use. In: Bioasis Technologies, Inc.; 2013. (ISBN No. US
89. Chen H, Qin Y, Zhang Q, Jiang W, Tang L, Liu J, He Q. Lactoferrin 20130183368 A1)
modified doxorubicin-loaded procationic liposomes for the treatment of 109. Kang T, Jiang M, Jiang D, Feng X, Yao J, Song Q, Chen H, Gao X, Chen
gliomas. Eur J Pharm Sci 2011;44:164-73. J. Enhancing Glioblastoma-Specific Penetration by Functionalization
90. Migliore MM, Vyas TK, Campbell RB, Amiji MM, Waszczak BL. Brain of Nanoparticles with an Iron-Mimic Peptide Targeting Transferrin/
delivery of proteins by the intranasal route of administration: a comparison Transferrin Receptor Complex. Mol Pharm 2015;12:2947-61.
of cationic liposomes versus aqueous solution formulations. J Pharm Sci 110. Dardevet L, Rani D, Aziz TA, Bazin I, Sabatier JM, Fadl M, Brambilla E,
2010;99:1745-61. De Waard M. Chlorotoxin: a helpful natural scorpion peptide to diagnose
91. Munson JM, Bellamkonda RV, Arbiser JL. Nanocarrier therapy for treating glioma and fight tumor invasion. Toxins (Basel) 2015;7:1079-101.
invasive tumors. In: Emory University & Georgia Institute Of Technology; 111. Pyrko P, Wang W, Markland FS, Swenson SD, Schmitmeier S, Schonthal
2010. (ISBN No. WO2010124004 A2) AH, Chen TC. The role of contortrostatin, a snake venom disintegrin, in
92. Redelmeier T, Luz M. Liposomal Composition for Convection-Enhanced the inhibition of tumor progression and prolongation of survival in a rodent
Delivery to the Central Nervous system. In: MedGenesis Therapeutix Inc.; glioma model. J Neurosurg 2005;103:526-37.
2011. (ISBN No. US20110274625 A1) 112. Kasai T, Nakamura K, Vaidyanath A, Chen L, Sekhar S, El-Ghlban S,
93. Mehnert W, Mader K. Solid lipid nanoparticles: production, Okada M, Mizutani A, Kudoh T, Murakami H, Seno M. Chlorotoxin
characterization and applications. Adv Drug Deliv Rev 2001;47:165-96. Fused to IgG-Fc Inhibits Glioblastoma Cell Motility via Receptor-
94. Kaur IP, Bhandari R, Bhandari S, Kakkar V. Potential of solid lipid Mediated Endocytosis. J Drug Deliv 2012;2012:975763.
nanoparticles in brain targeting. J Control Release 2008;127:97-109. 113. Yoo B, Ifediba MA, Ghosh S, Medarova Z, Moore A. Combination
95. Panyam J, Chavanpatil MD. Lipid-derived nanoparticles for brain-targeted treatment with theranostic nanoparticles for glioblastoma sensitization to
drug delivery. In: Panyam, J. and Chavanpatil, M. D.; 2010. (ISBN No. US TMZ. Mol Imaging Biol 2014;16:680-9.
20100076092 A1) 114. Locatelli E, Naddaka M, Uboldi C, Loudos G, Fragogeorgi E, Molinari V,
96. Jin J, Bae KH, Yang H, Lee SJ, Kim H, Kim Y, Joo KM, Seo SW, Park TG, Pucci A, Tsotakos T, Psimadas D, Ponti J, Franchini MC. Targeted delivery
Nam DH. In vivo specific delivery of c-Met siRNA to glioblastoma using of silver nanoparticles and alisertib: in vitro and in vivo synergistic effect
cationic solid lipid nanoparticles. Bioconjug Chem 2011;22:2568-72. against glioblastoma. Nanomedicine (Lond) 2014;9:839-49.
97. Singh I, Swami R, Pooja D, Jeengar MK, Khan W, Sistla R. Lactoferrin 115. Zhao L, Zhu J, Cheng Y, Xiong Z, Tang Y, Guo L, Shi X, Zhao J.
bioconjugated solid lipid nanoparticles: a new drug delivery system for Chlorotoxin-Conjugated Multifunctional Dendrimers Labeled with
potential brain targeting. J Drug Target 2016 24:212-23 Radionuclide 131I for Single Photon Emission Computed Tomography
Journal of Cancer Metastasis and Treatment ¦ Volume 2 ¦ March 15, 2016 ¦ 121