Page 74 - Read Online
P. 74

Page 14 of 18         Lee et al. J Cancer Metastasis Treat 2021;7:27  https://dx.doi.org/10.20517/2394-4722.2021.58

               17.       Tiedje V, Stuschke M, Weber F, Dralle H, Moss L, Fuhrer D. Anaplastic thyroid carcinoma: review of treatment protocols. Endocr
                    Relat Cancer 2018;25:R153-61.  DOI  PubMed
               18.       Smallridge RC. Approach to the patient with anaplastic thyroid carcinoma. J Clin Endocrinol Metab 2012;97:2566-72.  DOI
                    PubMed  PMC
               19.       Haddad RI, Lydiatt WM, Ball DW, et al. Anaplastic thyroid carcinoma, version 2.2015. J Natl Compr Canc Netw 2015;13:1140-50.
                    DOI  PubMed  PMC
               20.       Subbiah V, Kreitman RJ, Wainberg ZA, et al. Dabrafenib and trametinib treatment in patients with locally advanced or metastatic
                    BRAF V600-mutant anaplastic thyroid cancer. J Clin Oncol 2018;36:7-13.  DOI  PubMed  PMC
               21.       Kunstman JW, Juhlin CC, Goh G, et al. Characterization of the mutational landscape of anaplastic thyroid cancer via whole-exome
                    sequencing. Hum Mol Genet 2015;24:2318-29.  DOI  PubMed  PMC
               22.       Pozdeyev N, Gay LM, Sokol ES, et al. Genetic analysis of 779 advanced differentiated and anaplastic thyroid cancers. Clin Cancer
                    Res 2018;24:3059-68.  DOI  PubMed  PMC
               23.       Yoo SK, Song YS, Lee EK, et al. Integrative analysis of genomic and transcriptomic characteristics associated with progression of
                    aggressive thyroid cancer. Nat Commun 2019;10:1-12.  DOI  PubMed  PMC
               24.       Lee WK, Lee SG, Yim SH, et al. Whole exome sequencing identifies a novel hedgehog-interacting protein g516r mutation in locally
                    advanced papillary thyroid cancer. Int J Mol Sci 2018;19:2867.  DOI  PubMed  PMC
               25.       Le Pennec S, Konopka T, Gacquer D, et al. Intratumor heterogeneity and clonal evolution in an aggressive papillary thyroid cancer
                    and matched metastases. Endocr Relat Cancer 2015;22:205-16.  DOI  PubMed
               26.       Cao X, Dang L, Zheng X, et al. Targeting super-enhancer-driven oncogenic transcription by CDK7 inhibition in anaplastic thyroid
                    carcinoma. Thyroid 2019;29:809-23.  DOI  PubMed
               27.       Whyte WA, Orlando DA, Hnisz D, et al. Master transcription factors and mediator establish super-enhancers at key cell identity
                    genes. Cell 2013;153:307-19.  DOI  PubMed  PMC
               28.       Lovén J, Hoke HA, Lin CY, et al. Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell 2013;153:320-34.
                    DOI  PubMed  PMC
               29.       Chapuy B, McKeown MR, Lin CY, et al. Discovery and characterization of super-enhancer-associated dependencies in diffuse large
                    B cell lymphoma. Cancer cell 2013;24:777-90.  DOI  PubMed  PMC
               30.       Hnisz D, Abraham BJ, Lee TI, et al. Super-enhancers in the control of cell identity and disease. Cell 2013;155:934-47.  DOI  PubMed
                    PMC
               31.       Shi J, Whyte WA, Zepeda-Mendoza CJ, et al. Role of SWI/SNF in acute leukemia maintenance and enhancer-mediated Myc
                    regulation. Genes Dev 2013;27:2648-62.  DOI  PubMed  PMC
               32.       Sainsbury S, Bernecky C, Cramer P. Structural basis of transcription initiation by RNA polymerase II. Nat Rev Mol Cell Biol
                    2015;16:129-43.  DOI  PubMed
               33.       Asturias FJ. RNA polymerase II structure, and organization of the preinitiation complex. Curr Opin Struct Biol 2004;14:121-9.  DOI
                    PubMed
               34.       Warfield L, Ramachandran S, Baptista T, Devys D, Tora L, Hahn S. Transcription of nearly all yeast RNA polymerase II-transcribed
                    genes is dependent on transcription factor TFIID. Mol Cell 2017;68:118-29.e5.  DOI  PubMed  PMC
               35.       Thomas MC, Chiang C-M. The general transcription machinery and general cofactors. Crit Rev Biochem Mol Biol 2006;41:105-78.
                    DOI  PubMed
               36.       Mittler G, Kremmer E, Timmers HTM, Meisterernst M. Novel critical role of a human Mediator complex for basal RNA polymerase
                    II transcription. EMBO Rep 2001;2:808-13.  DOI  PubMed  PMC
               37.       Poss ZC, Ebmeier CC, Taatjes DJ. The Mediator complex and transcription regulation. Crit Rev Biochem Mol Biol 2013;48:575-608.
                    DOI  PubMed  PMC
               38.       Compe E, Egly J-M. TFIIH: when transcription met DNA repair. Nat Rev Mol Cell Biol 2012;13:343-54.  DOI  PubMed
               39.       Moreland RJ, Tirode F, Yan Q, Conaway JW, Egly J-M, Conaway RC. A role for the TFIIH XPB DNA helicase in promoter escape
                    by RNA polymerase II. J Biol Chem 1999;274:22127-30.  DOI  PubMed
               40.       Ghosh A, Shuman S, Lima CD. Structural insights to how mammalian capping enzyme reads the CTD code. Mol Cell 2011;43:299-
                    310.  DOI  PubMed  PMC
               41.       Larochelle S, Amat R, Glover-Cutter K, et al. Cyclin-dependent kinase control of the initiation-to-elongation switch of RNA
                    polymerase II. Nat Struct Mol Biol 2012;19:1108-15.  DOI  PubMed  PMC
               42.       Jonkers I, Lis JT. Getting up to speed with transcription elongation by RNA polymerase II. Nat Rev Mol Cell Biol 2015;16:167-77.
                    DOI  PubMed  PMC
               43.       Marshall NF, Price DH. Purification of P-TEFb, a transcription factor required for the transition into productive elongation. J Biol
                    Chem 1995;270:12335-8.  DOI  PubMed
               44.       Hsin JP, Manley JL. The RNA polymerase II CTD coordinates transcription and RNA processing. Genes Dev 2012;26:2119-37.  DOI
                    PubMed  PMC
               45.       Fan Z, Devlin JR, Hogg SJ, et al. CDK13 cooperates with CDK12 to control global RNA polymerase II processivity. Sci Adv
                    2020;6:eaaz5041.  DOI  PubMed  PMC
               46.       Liang K, Gao X, Gilmore JM, et al. Characterization of human cyclin-dependent kinase 12 (CDK12) and CDK13 complexes in C-
                    terminal domain phosphorylation, gene transcription, and RNA processing. Mol Cell Biol 2015;35:928-38.  DOI  PubMed  PMC
               47.       Nie Z, Hu G, Wei G, et al. c-Myc is a universal amplifier of expressed genes in lymphocytes and embryonic stem cells. Cell
                    2012;151:68-79.  DOI  PubMed  PMC
   69   70   71   72   73   74   75   76   77   78   79