Page 74 - Read Online
P. 74
Page 14 of 18 Lee et al. J Cancer Metastasis Treat 2021;7:27 https://dx.doi.org/10.20517/2394-4722.2021.58
17. Tiedje V, Stuschke M, Weber F, Dralle H, Moss L, Fuhrer D. Anaplastic thyroid carcinoma: review of treatment protocols. Endocr
Relat Cancer 2018;25:R153-61. DOI PubMed
18. Smallridge RC. Approach to the patient with anaplastic thyroid carcinoma. J Clin Endocrinol Metab 2012;97:2566-72. DOI
PubMed PMC
19. Haddad RI, Lydiatt WM, Ball DW, et al. Anaplastic thyroid carcinoma, version 2.2015. J Natl Compr Canc Netw 2015;13:1140-50.
DOI PubMed PMC
20. Subbiah V, Kreitman RJ, Wainberg ZA, et al. Dabrafenib and trametinib treatment in patients with locally advanced or metastatic
BRAF V600-mutant anaplastic thyroid cancer. J Clin Oncol 2018;36:7-13. DOI PubMed PMC
21. Kunstman JW, Juhlin CC, Goh G, et al. Characterization of the mutational landscape of anaplastic thyroid cancer via whole-exome
sequencing. Hum Mol Genet 2015;24:2318-29. DOI PubMed PMC
22. Pozdeyev N, Gay LM, Sokol ES, et al. Genetic analysis of 779 advanced differentiated and anaplastic thyroid cancers. Clin Cancer
Res 2018;24:3059-68. DOI PubMed PMC
23. Yoo SK, Song YS, Lee EK, et al. Integrative analysis of genomic and transcriptomic characteristics associated with progression of
aggressive thyroid cancer. Nat Commun 2019;10:1-12. DOI PubMed PMC
24. Lee WK, Lee SG, Yim SH, et al. Whole exome sequencing identifies a novel hedgehog-interacting protein g516r mutation in locally
advanced papillary thyroid cancer. Int J Mol Sci 2018;19:2867. DOI PubMed PMC
25. Le Pennec S, Konopka T, Gacquer D, et al. Intratumor heterogeneity and clonal evolution in an aggressive papillary thyroid cancer
and matched metastases. Endocr Relat Cancer 2015;22:205-16. DOI PubMed
26. Cao X, Dang L, Zheng X, et al. Targeting super-enhancer-driven oncogenic transcription by CDK7 inhibition in anaplastic thyroid
carcinoma. Thyroid 2019;29:809-23. DOI PubMed
27. Whyte WA, Orlando DA, Hnisz D, et al. Master transcription factors and mediator establish super-enhancers at key cell identity
genes. Cell 2013;153:307-19. DOI PubMed PMC
28. Lovén J, Hoke HA, Lin CY, et al. Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell 2013;153:320-34.
DOI PubMed PMC
29. Chapuy B, McKeown MR, Lin CY, et al. Discovery and characterization of super-enhancer-associated dependencies in diffuse large
B cell lymphoma. Cancer cell 2013;24:777-90. DOI PubMed PMC
30. Hnisz D, Abraham BJ, Lee TI, et al. Super-enhancers in the control of cell identity and disease. Cell 2013;155:934-47. DOI PubMed
PMC
31. Shi J, Whyte WA, Zepeda-Mendoza CJ, et al. Role of SWI/SNF in acute leukemia maintenance and enhancer-mediated Myc
regulation. Genes Dev 2013;27:2648-62. DOI PubMed PMC
32. Sainsbury S, Bernecky C, Cramer P. Structural basis of transcription initiation by RNA polymerase II. Nat Rev Mol Cell Biol
2015;16:129-43. DOI PubMed
33. Asturias FJ. RNA polymerase II structure, and organization of the preinitiation complex. Curr Opin Struct Biol 2004;14:121-9. DOI
PubMed
34. Warfield L, Ramachandran S, Baptista T, Devys D, Tora L, Hahn S. Transcription of nearly all yeast RNA polymerase II-transcribed
genes is dependent on transcription factor TFIID. Mol Cell 2017;68:118-29.e5. DOI PubMed PMC
35. Thomas MC, Chiang C-M. The general transcription machinery and general cofactors. Crit Rev Biochem Mol Biol 2006;41:105-78.
DOI PubMed
36. Mittler G, Kremmer E, Timmers HTM, Meisterernst M. Novel critical role of a human Mediator complex for basal RNA polymerase
II transcription. EMBO Rep 2001;2:808-13. DOI PubMed PMC
37. Poss ZC, Ebmeier CC, Taatjes DJ. The Mediator complex and transcription regulation. Crit Rev Biochem Mol Biol 2013;48:575-608.
DOI PubMed PMC
38. Compe E, Egly J-M. TFIIH: when transcription met DNA repair. Nat Rev Mol Cell Biol 2012;13:343-54. DOI PubMed
39. Moreland RJ, Tirode F, Yan Q, Conaway JW, Egly J-M, Conaway RC. A role for the TFIIH XPB DNA helicase in promoter escape
by RNA polymerase II. J Biol Chem 1999;274:22127-30. DOI PubMed
40. Ghosh A, Shuman S, Lima CD. Structural insights to how mammalian capping enzyme reads the CTD code. Mol Cell 2011;43:299-
310. DOI PubMed PMC
41. Larochelle S, Amat R, Glover-Cutter K, et al. Cyclin-dependent kinase control of the initiation-to-elongation switch of RNA
polymerase II. Nat Struct Mol Biol 2012;19:1108-15. DOI PubMed PMC
42. Jonkers I, Lis JT. Getting up to speed with transcription elongation by RNA polymerase II. Nat Rev Mol Cell Biol 2015;16:167-77.
DOI PubMed PMC
43. Marshall NF, Price DH. Purification of P-TEFb, a transcription factor required for the transition into productive elongation. J Biol
Chem 1995;270:12335-8. DOI PubMed
44. Hsin JP, Manley JL. The RNA polymerase II CTD coordinates transcription and RNA processing. Genes Dev 2012;26:2119-37. DOI
PubMed PMC
45. Fan Z, Devlin JR, Hogg SJ, et al. CDK13 cooperates with CDK12 to control global RNA polymerase II processivity. Sci Adv
2020;6:eaaz5041. DOI PubMed PMC
46. Liang K, Gao X, Gilmore JM, et al. Characterization of human cyclin-dependent kinase 12 (CDK12) and CDK13 complexes in C-
terminal domain phosphorylation, gene transcription, and RNA processing. Mol Cell Biol 2015;35:928-38. DOI PubMed PMC
47. Nie Z, Hu G, Wei G, et al. c-Myc is a universal amplifier of expressed genes in lymphocytes and embryonic stem cells. Cell
2012;151:68-79. DOI PubMed PMC