Page 77 - Read Online
P. 77

Lee et al. J Cancer Metastasis Treat 2021;7:27  https://dx.doi.org/10.20517/2394-4722.2021.58  Page 17 of 18

                    2013;27:504-13.  DOI  PubMed  PMC
               115.      Kouzarides T. Chromatin modifications and their function. Cell 2007;128:693-705.  DOI  PubMed
               116.      Filippakopoulos P, Picaud S, Mangos M, et al. Histone recognition and large-scale structural analysis of the human bromodomain
                    family. Cell 2012;149:214-31.  DOI  PubMed  PMC
               117.      Mertz JA, Conery AR, Bryant BM, et al. Targeting MYC dependence in cancer by inhibiting BET bromodomains. Proc Natl Acad
                    Sci U S A 2011;108:16669-74.  DOI  PubMed  PMC
               118.      Delmore JE, Issa GC, Lemieux ME, et al. BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell 2011;146:904-
                    17.  DOI  PubMed  PMC
               119.      Bian B, Bigonnet M, Gayet O, et al. Gene expression profiling of patient-derived pancreatic cancer xenografts predicts sensitivity to
                    the BET bromodomain inhibitor JQ 1: implications for individualized medicine efforts. EMBO Mol Med 2017;9:482-97.  DOI
                    PubMed  PMC
               120.      Li N, Yang L, Qi XK, et al. BET bromodomain inhibitor JQ1 preferentially suppresses EBV-positive nasopharyngeal carcinoma cells
                    partially through repressing c-Myc. Cell Death Dis 2018;9:761.  DOI  PubMed  PMC
               121.      Shao Q, Kannan A, Lin Z, Stack BC, Suen JY, Gao L. BET protein inhibitor JQ1 attenuates Myc-amplified MCC tumor growth in
                    vivo. Cancer Res 2014;74:7090-102.  DOI  PubMed  PMC
               122.      Baratta MG, Schinzel AC, Zwang Y, et al. An in-tumor genetic screen reveals that the BET bromodomain protein, BRD4, is a
                    potential therapeutic target in ovarian carcinoma. Proc Natl Acad Sci U S A 2015;112:232-7.  DOI  PubMed  PMC
               123.      Gao X, Wu X, Zhang X, et al. Inhibition of BRD4 suppresses tumor growth and enhances iodine uptake in thyroid cancer. Biochem
                    Biophys Res Commun 2016;469:679-85.  DOI  PubMed
               124.      Mio C, Conzatti K, Baldan F, et al. BET bromodomain inhibitor JQ1 modulates microRNA expression in thyroid cancer cells. Oncol
                    Rep 2018;39:582-8.  DOI  PubMed
               125.      Zhu X, Enomoto K, Zhao L, et al. Bromodomain and extraterminal protein inhibitor JQ1 suppresses thyroid tumor growth in a mouse
                    model. Clin Cancer Res 2017;23:430-40.  DOI  PubMed  PMC
               126.      McFadden DG, Vernon A, Santiago PM, et al. p53 constrains progression to anaplastic thyroid carcinoma in a Braf-mutant mouse
                    model of papillary thyroid cancer. Proc Natl Acad Sci U S A 2014;111:E1600-9.  DOI  PubMed  PMC
               127.      Zaballos MA, Santisteban P. Key signaling pathways in thyroid cancer. J Endocrinol 2017;235:R43-61.  DOI  PubMed
               128.      Naoum GE, Morkos M, Kim B, Arafat W. Novel targeted therapies and immunotherapy for advanced thyroid cancers. Mol Cancer
                    2018;17:51.  DOI  PubMed  PMC
               129.      Zhu X, Holmsen E, Park S, Willingham MC, Qi J, Cheng SY. Synergistic effects of BET and MEK inhibitors promote regression of
                    anaplastic thyroid tumors. Oncotarget 2018;9:35408-21.  DOI  PubMed  PMC
               130.      Ozer HG, El-Gamal D, Powell B, et al. BRD4 profiling identifies critical chronic lymphocytic leukemia oncogenic circuits and
                    reveals sensitivity to PLX51107, a novel structurally distinct BET inhibitor. Cancer Discov 2018;8:458-77.  DOI  PubMed  PMC
               131.      Barrett SD, Bridges AJ, Dudley DT, et al. The discovery of the benzhydroxamate MEK inhibitors CI-1040 and PD 0325901. Bioorg
                    Med Chem Lett 2008;18:6501-4.  DOI  PubMed
               132.      Wang L, Lonard DM, O’Malley BW. The role of steroid receptor coactivators in hormone dependent cancers and their potential as
                    therapeutic targets. Horm Cancer 2016;7:229-35.  DOI  PubMed  PMC
               133.      Yao TP, Ku G, Zhou N, Scully R, Livingston DM. The nuclear hormone receptor coactivator SRC-1 is a specific target of p300. Proc
                    Natl Acad Sci U S A 1996;93:10626-31.  DOI  PubMed  PMC
               134.      Anafi M, Yang YF, Barlev NA, et al. GCN5 and ADA adaptor proteins regulate triiodothyronine/GRIP1 and SRC-1 coactivator-
                    dependent gene activation by the human thyroid hormone receptor. Mol Endocrinol 2000;14:718-32.  DOI  PubMed
               135.      Brown K, Chen Y, Underhill TM, Mymryk JS, Torchia J. The coactivator p/CIP/SRC-3 facilitates retinoic acid receptor signaling via
                    recruitment of GCN5. J Biol Chem 2003;278:39402-12.  DOI  PubMed
               136.      Koh SS, Chen D, Lee YH, Stallcup MR. Synergistic enhancement of nuclear receptor function by p160 coactivators and two
                    coactivators with protein methyltransferase activities. J Biol Chem 2001;276:1089-98.  DOI  PubMed
               137.      Spencer TE, Jenster G, Burcin MM, et al. Steroid receptor coactivator-1 is a histone acetyltransferase. Nature 1997;389:194-8.  DOI
                    PubMed
               138.      Zhang H, Yi X, Sun X, et al. Differential gene regulation by the SRC family of coactivators. Genes Dev 2004;18:1753-65.  DOI
                    PubMed  PMC
               139.      Anzick SL, Kononen J, Walker RL, et al. AIB1, a steroid receptor coactivator amplified in breast and ovarian cancer. Science
                    1997;277:965-8.  DOI  PubMed
               140.      Yan J, Tsai SY, Tsai MJ. SRC-3/AIB1: transcriptional coactivator in oncogenesis. Acta Pharmacol Sin 2006;27:387-94.  DOI
                    PubMed
               141.      Xu J, Wu RC, O'Malley BW. Normal and cancer-related functions of the p160 steroid receptor co-activator (SRC) family. Nat Rev
                    Cancer 2009;9:615-30.  DOI  PubMed  PMC
               142.      Torres-Arzayus MI, Font de Mora J, Yuan J, et al. High tumor incidence and activation of the PI3K/AKT pathway in transgenic mice
                    define AIB1 as an oncogene. Cancer Cell 2004;6:263-74.  DOI  PubMed
               143.      Ying H, Willingham M, Cheng S. The steroid receptor coactivator-3 is a tumor promoter in a mouse model of thyroid cancer.
                    Oncogene 2008;27:823-30.  DOI  PubMed
               144.      Lonard DM, O'malley BW. Nuclear receptor coregulators: modulators of pathology and therapeutic targets. Nat Rev Endocrinol
                    2012;8:598-604.  DOI  PubMed  PMC
               145.      Song X, Chen J, Zhao M, et al. Development of potent small-molecule inhibitors to drug the undruggable steroid receptor
   72   73   74   75   76   77   78   79   80   81   82