Page 75 - Read Online
P. 75
Lee et al. J Cancer Metastasis Treat 2021;7:27 https://dx.doi.org/10.20517/2394-4722.2021.58 Page 15 of 18
48. Brown JD, Lin CY, Duan Q, et al. NF-κB directs dynamic super enhancer formation in inflammation and atherogenesis. Mol Cell
2014;56:219-31. DOI PubMed PMC
49. Præstholm SM, Siersbæk MS, Nielsen R, et al. Multiple mechanisms regulate H3 acetylation of enhancers in response to thyroid
hormone. PLoS Genet 2020;16:e1008770. DOI PubMed PMC
50. Cheng SY, Leonard JL, Davis PJ. Molecular aspects of thyroid hormone actions. Endocr Rev 2010;31:139-70. DOI PubMed PMC
51. Mullen AC, Orlando DA, Newman JJ, et al. Master transcription factors determine cell-type-specific responses to TGF-β signaling.
Cell 2011;147:565-76. DOI PubMed PMC
52. Trompouki E, Bowman TV, Lawton LN, et al. Lineage regulators direct BMP and Wnt pathways to cell-specific programs during
differentiation and regeneration. Cell 2011;147:577-89. DOI PubMed PMC
53. Allen BL, Taatjes DJ. The Mediator complex: a central integrator of transcription. Nat Rev Mol Cell Biol 2015;16:155-66. DOI
PubMed PMC
54. Barbieri CE, Baca SC, Lawrence MS, et al. Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate
cancer. Nat Genet 2012;44:685-9. DOI PubMed PMC
55. Makinen N, Mehine M, Tolvanen J, et al. MED12, the mediator complex subunit 12 gene, is mutated at high frequency in uterine
leiomyomas. Science 2011;334:252-5. DOI PubMed
56. Jones PA, Issa JP, Baylin S. Targeting the cancer epigenome for therapy. Nat Rev Genet 2016;17:630-41. DOI PubMed
57. Hnisz D, Day DS, Young RA. Insulated neighborhoods: structural and functional units of mammalian gene control. Cell
2016;167:1188-200. DOI PubMed PMC
58. Gorkin DU, Leung D, Ren B. The 3D genome in transcriptional regulation and pluripotency. Cell stem cell 2014;14:762-75. DOI
PubMed PMC
59. Gibcus JH, Dekker J. The hierarchy of the 3D genome. Mol Cell 2013;49:773-82. DOI PubMed PMC
60. Phillips-Cremins JE, Corces VG. Chromatin insulators: linking genome organization to cellular function. Mol Cell 2013;50:461-74.
DOI PubMed PMC
61. Lawrence MS, Stojanov P, Mermel CH, et al. Discovery and saturation analysis of cancer genes across 21 tumour types. Nature
2014;505:495-501. DOI PubMed PMC
62. Viny AD, Ott CJ, Spitzer B, et al. Dose-dependent role of the cohesin complex in normal and malignant hematopoiesis. J Cell Mol
Med 2015;212:1819-32. DOI PubMed PMC
63. Drier Y, Cotton MJ, Williamson KE, et al. An oncogenic MYB feedback loop drives alternate cell fates in adenoid cystic carcinoma.
Nat Genet 2016;48:265-72. DOI PubMed PMC
64. Tomazou EM, Sheffield NC, Schmidl C, et al. Epigenome mapping reveals distinct modes of gene regulation and widespread
enhancer reprogramming by the oncogenic fusion protein EWS-FLI1. Cell Rep 2015;10:1082-95. DOI PubMed PMC
65. Zhang X, Choi PS, Francis JM, et al. Identification of focally amplified lineage-specific super-enhancers in human epithelial cancers.
Nat Genet 2016;48:176-82. DOI PubMed PMC
66. Mansour MR, Abraham BJ, Anders L, et al. An oncogenic super-enhancer formed through somatic mutation of a noncoding
intergenic element. Science 2014;346:1373-7. DOI PubMed PMC
67. Nabet B, Broin PÓ, Reyes JM, et al. Deregulation of the Ras-Erk signaling axis modulates the enhancer landscape. Cell Rep
2015;12:1300-13. DOI PubMed PMC
68. Katainen R, Dave K, Pitkänen E, et al. CTCF/cohesin-binding sites are frequently mutated in cancer. Nat Genet 2015;47:818-21.
DOI PubMed
69. Esteller M. Epigenetics in cancer. N Engl J Med 2008;358:1148-59. DOI PubMed
70. Ando M, Saito Y, Xu G, et al. Chromatin dysregulation and DNA methylation at transcription start sites associated with
transcriptional repression in cancers. Nat Commun 2019;10:2188. DOI PubMed PMC
71. Wang Z, Yin J, Zhou W, et al. Complex impact of DNA methylation on transcriptional dysregulation across 22 human cancer types.
Nucleic Acids Res 2020;48:2287-302. DOI PubMed PMC
72. Baylin SB, Jones PA. Epigenetic determinants of cancer. Cold Spring Harb Perspect Biol 2016;8:a019505. DOI PubMed PMC
73. Polak P, Karlić R, Koren A, et al. Cell-of-origin chromatin organization shapes the mutational landscape of cancer. Nature
2015;518:360-4. DOI PubMed PMC
74. Ayob AZ, Ramasamy TS. Cancer stem cells as key drivers of tumour progression. J Biomed Sci 2018;25:20. DOI PubMed PMC
75. Batlle E, Clevers H. Cancer stem cells revisited. Nat Med 2017;23:1124-34. DOI PubMed
76. Greaves M, Maley CC. Clonal evolution in cancer. Nature 2012;481:306-13. DOI PubMed PMC
77. Loh YH, Wu Q, Chew JL, et al. The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells.
Nat Genet 2006;38:431-40. DOI PubMed
78. Boyer LA, Lee TI, Cole MF, et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 2005;122:947-56.
DOI PubMed PMC
79. Kagey MH, Newman JJ, Bilodeau S, et al. Mediator and cohesin connect gene expression and chromatin architecture. Nature
2010;467:430-5. DOI PubMed PMC
80. Rahl PB, Lin CY, Seila AC, et al. c-Myc regulates transcriptional pause release. Cell 2010;141:432-45. DOI PubMed PMC
81. Poli V, Fagnocchi L, Fasciani A, et al. MYC-driven epigenetic reprogramming favors the onset of tumorigenesis by inducing a stem
cell-like state. Nat Commun 2018;9:1024. DOI PubMed PMC
82. Ben-Porath I, Thomson MW, Carey VJ, et al. An embryonic stem cell-like gene expression signature in poorly differentiated
aggressive human tumors. Nat Genet 2008;40:499-507. DOI PubMed PMC