Page 38 - Read Online
P. 38

Sabol et al. J Cancer Metastasis Treat 2021;7:20  https://dx.doi.org/10.20517/2394-4722.2021.35  Page 15 of 15

               86.       Yamada T, Yamazaki H, Yamane T, et al. Regulation of osteoclast development by Notch signaling directed to osteoclast precursors
                    and through stromal cells. Blood 2003;101:2227-34.  DOI  PubMed
               87.       Zanotti S, Smerdel-Ramoya A, Stadmeyer L, Durant D, Radtke F, Canalis E. Notch inhibits osteoblast differentiation and causes
                    osteopenia. Endocrinology 2008;149:3890-9.  DOI  PubMed  PMC
               88.       Hilton MJ, Tu X, Wu X, et al. Notch signaling maintains bone marrow mesenchymal progenitors by suppressing osteoblast
                    differentiation. Nat Med 2008;14:306-14.  DOI  PubMed  PMC
               89.       Deregowski V, Gazzerro E, Priest L, Rydziel S, Canalis E. Notch 1 overexpression inhibits osteoblastogenesis by suppressing
                    Wnt/beta-catenin but not bone morphogenetic protein signaling. J Biol Chem 2006;281:6203-10.  DOI  PubMed
               90.       Sciaudone M, Gazzerro E, Priest L, Delany AM, Canalis E. Notch 1 impairs osteoblastic cell differentiation. Endocrinology
                    2003;144:5631-9.  DOI  PubMed
               91.       Tezuka K, Yasuda M, Watanabe N, et al. Stimulation of osteoblastic cell differentiation by Notch. J Bone Miner Res 2002;17:231-9.
                    DOI  PubMed
               92.       Canalis E, Adams DJ, Boskey A, Parker K, Kranz L, Zanotti S. Notch signaling in osteocytes differentially regulates cancellous and
                    cortical bone remodeling. J Biol Chem 2013;288:25614-25.  DOI  PubMed  PMC
               93.       Liu P, Ping Y, Ma M, et al. Anabolic actions of Notch on mature bone. Proc Natl Acad Sci U S A 2016;113:E2152-61.  DOI  PubMed
                    PMC
               94.       Marino S, Petrusca DN, Roodman GD. Therapeutic targets in myeloma bone disease. Br J Pharmacol 2019.  DOI  PubMed
               95.       Silbermann R, Roodman GD. Current controversies in the management of myeloma bone disease. J Cell Physiol 2016;231:2374-9.
                    DOI  PubMed
               96.       Raje N, Roodman GD. Advances in the biology and treatment of bone disease in multiple myeloma. Clin Cancer Res 2011;17:1278-
                    86.  DOI  PubMed
               97.       Roodman GD. Pathogenesis of myeloma bone disease. Leukemia 2009;23:435-41.  DOI  PubMed
               98.       Colombo M, Thümmler K, Mirandola L, et al. Notch signaling drives multiple myeloma induced osteoclastogenesis. Oncotarget
                    2014;5:10393-406.  DOI  PubMed  PMC
               99.       Xiong J, Onal M, Jilka RL, Weinstein RS, Manolagas SC, O'Brien CA. Matrix-embedded cells control osteoclast formation. Nat Med
                    2011;17:1235-41.  DOI  PubMed  PMC
               100.      Nakashima T, Hayashi M, Fukunaga T, et al. Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat
                    Med 2011;17:1231-4.  DOI  PubMed
               101.      Xu S, Evans H, Buckle C, et al. Impaired osteogenic differentiation of mesenchymal stem cells derived from multiple myeloma
                    patients is associated with a blockade in the deactivation of the Notch signaling pathway. Leukemia 2012;26:2546-9.  DOI  PubMed
               102.      Guo J, Fei C, Zhao Y, et al. Lenalidomide restores the osteogenic differentiation of bone marrow mesenchymal stem cells from
                    multiple myeloma patients via deactivating Notch signaling pathway. Oncotarget 2017;8:55405-21.  DOI  PubMed  PMC
               103.      Canalis E, Bridgewater D, Schilling L, Zanotti S. Canonical Notch activation in osteocytes causes osteopetrosis. Am J Physiol
                    Endocrinol Metab 2016;310:E171-82.  DOI  PubMed  PMC
               104.      Schwarzer R, Kaiser M, Acikgoez O, et al. Notch inhibition blocks multiple myeloma cell-induced osteoclast activation. Leukemia
                    2008;22:2273-7.  DOI  PubMed
               105.      Ferrari A, McAndrews K, Nelson JH, et al. Bone-targeted inhibition of Notch signaling blocks tumor growth and prevents bone loss
                    without inducing gut toxicity in immunodeficient and immunocompetent murine models of established multiple myeloma. J Bone
                    Miner Res 2019;34:32.
               106.      Moore G, Annett S, McClements L, Robson T. Top Notch targeting strategies in cancer: A detailed overview of recent insights and
                    current perspectives. Cells 2020;9:1503.  DOI  PubMed  PMC
               107.      Fabbro D, Bauer M, Murone M, Lehal R. Notch inhibition in cancer: Challenges and opportunities. Chimia (Aarau) 2020;74:779-83.
                    DOI  PubMed
               108.      Nefedova Y, Gabrilovich D. Mechanisms and clinical prospects of Notch inhibitors in the therapy of hematological malignancies.
                    Drug Resist Updat 2008;11:210-8.  DOI  PubMed  PMC
               109.      Kreft AF, Martone R, Porte A. Recent advances in the identification of gamma-secretase inhibitors to clinically test the Abeta
                    oligomer hypothesis of Alzheimer's disease. J Med Chem 2009;52:6169-88.  DOI  PubMed
               110.      Imbimbo BP. Therapeutic potential of gamma-secretase inhibitors and modulators. Curr Top Med Chem 2008;8:54-61.  DOI
                    PubMed
               111.      Searfoss GH, Jordan WH, Calligaro DO, et al. Adipsin, a biomarker of gastrointestinal toxicity mediated by a functional gamma-
                    secretase inhibitor. J Biol Chem 2003;278:46107-16.  DOI  PubMed
               112.      Lehal R, Zaric J, Vigolo M, et al. Pharmacological disruption of the Notch transcription factor complex. Proc Natl Acad Sci U S A
                    2020;117:16292-301.  DOI  PubMed  PMC
               113.      Pont MJ, Hill T, Cole GO, et al. γ-Secretase inhibition increases efficacy of BCMA-specific chimeric antigen receptor T cells in
                    multiple myeloma. Blood 2019;134:1585-97.  DOI  PubMed  PMC
   33   34   35   36   37   38   39   40   41   42   43