Page 37 - Read Online
P. 37
Page 14 of 15 Sabol et al. J Cancer Metastasis Treat 2021;7:20 https://dx.doi.org/10.20517/2394-4722.2021.35
Mol Cancer Ther 2010;9:3200-9. DOI PubMed PMC
55. Colombo M, Platonova N, Giannandrea D, Palano MT, Basile A, Chiaramonte R. Re-establishing apoptosis competence in bone
associated cancers via communicative reprogramming induced through Notch signaling inhibition. Front Pharmacol 2019;10:145.
DOI PubMed PMC
56. Mirandola L, Apicella L, Colombo M, et al. Anti-Notch treatment prevents multiple myeloma cells localization to the bone marrow
via the chemokine system CXCR4/SDF-1. Leukemia 2013;27:1558-66. DOI PubMed
57. Guo D, Li C, Teng Q, Sun Z, Li Y, Zhang C. Notch1 overexpression promotes cell growth and tumor angiogenesis in myeloma.
Neoplasma 2013;60:33-40. DOI PubMed
58. Sabol HM, Amorim T, Kurihara N, et al. Autocrine and paracrine Notch receptor 3 signaling in the myeloma niche stimulates tumor
growth and bone destruction. J Bone Miner Res 2020;35:98.
59. Chiron D, Maïga S, Descamps G, et al. Critical role of the NOTCH ligand JAG2 in self-renewal of myeloma cells. Blood Cells Mol
Dis 2012;48:247-53. DOI PubMed
60. Berenstein R, Nogai A, Waechter M, et al. Multiple myeloma cells modify VEGF/IL-6 levels and osteogenic potential of bone
marrow stromal cells via Notch/miR-223. Mol Carcinog 2016;55:1927-39. DOI PubMed
61. Xu D, Hu J, Xu S, et al. Dll1/Notch activation accelerates multiple myeloma disease development by promoting CD138+ MM-cell
proliferation. Leukemia 2012;26:1402-5. DOI PubMed
62. Xu D, Hu J, De Bruyne E, et al. Dll1/Notch activation contributes to bortezomib resistance by upregulating CYP1A1 in multiple
myeloma. Biochem Biophys Res Commun 2012;428:518-24. DOI PubMed
63. Yin L. Chondroitin synthase 1 is a key molecule in myeloma cell-osteoclast interactions. J Biol Chem 2005;280:15666-72. DOI
PubMed
64. Hu J, Zhu X, Lu Q. Antiproliferative effects of γ-secretase inhibitor, a Notch signalling inhibitor, in multiple myeloma cells and its
molecular mechanism of action. J Int Med Res 2013;41:1017-26. DOI PubMed
65. Das DS, Das A, Ray A, et al. Blockade of deubiquitylating enzyme USP1 inhibits DNA repair and triggers apoptosis in multiple
myeloma cells. Clin Cancer Res 2017;23:4280-9. DOI PubMed PMC
66. Wang Y, Li W, Huang F, et al. Synthesis of sophocarpine triflorohydrazone and its proliferation inhibition and apoptosis induction
activity in myeloma cells through Notch3-p53 signaling activation. Environ Toxicol 2021;36:484-90. DOI PubMed
67. Bai Y, Su X. Updates to the drug-resistant mechanism of proteasome inhibitors in multiple myeloma. Asia Pac J Clin Oncol
2021;17:29-35. DOI PubMed
68. Abdi J, Chen G, Chang H. Drug resistance in multiple myeloma: latest findings and new concepts on molecular mechanisms.
Oncotarget 2013;4:2186-207. DOI PubMed PMC
69. Nefedova Y, Cheng P, Alsina M, Dalton WS, Gabrilovich DI. Involvement of Notch-1 signaling in bone marrow stroma-mediated de
novo drug resistance of myeloma and other malignant lymphoid cell lines. Blood 2004;103:3503-10. DOI PubMed
70. Colombo M, Garavelli S, Mazzola M, et al. Multiple myeloma exploits Jagged1 and Jagged2 to promote intrinsic and bone marrow-
dependent drug resistance. Haematologica 2020;105:1925-36. DOI PubMed PMC
71. Muguruma Y, Yahata T, Warita T, et al. Jagged1-induced Notch activation contributes to the acquisition of bortezomib resistance in
myeloma cells. Blood Cancer J 2017;7:650. DOI PubMed PMC
72. Ding Y, Shen Y. Notch increased vitronection adhesion protects myeloma cells from drug induced apoptosis. Biochem Biophys Res
Commun 2015;467:717-22. DOI PubMed
73. Vacca A, Ribatti D, Roncali L, et al. Bone marrow angiogenesis and progression in multiple myeloma. Br J Haematol 1994;87:503-8.
DOI PubMed
74. Scavelli C, Nico B, Cirulli T, et al. Vasculogenic mimicry by bone marrow macrophages in patients with multiple myeloma.
Oncogene 2008;27:663-74. DOI PubMed
75. Ria R, Melaccio A, Racanelli V, Vacca A. Anti-VEGF drugs in the treatment of multiple myeloma patients. J Clin Med 2020;9:1765.
DOI PubMed PMC
76. Vacca A, Ribatti D. Bone marrow angiogenesis in multiple myeloma. Leukemia 2006;20:193-9. DOI PubMed
77. Ria R, Roccaro AM, Merchionne F, Vacca A, Dammacco F, Ribatti D. Vascular endothelial growth factor and its receptors in
multiple myeloma. Leukemia 2003;17:1961-6. DOI PubMed
78. Palano MT, Giannandrea D, Platonova N, et al. Jagged ligands enhance the pro-angiogenic activity of multiple myeloma cells.
Cancers (Basel) 2020;12:2600. DOI PubMed PMC
79. Saltarella I, Frassanito MA, Lamanuzzi A, et al. Homotypic and heterotypic activation of the Notch pathway in multiple myeloma-
enhanced angiogenesis: A novel therapeutic target? Neoplasia 2019;21:93-105. DOI PubMed PMC
80. Mulcrone PL, Edwards SKE, Petrusca DN, Haneline LS, Delgado-Calle J, Roodman GD. Osteocyte Vegf-a contributes to myeloma-
associated angiogenesis and is regulated by Fgf23. Sci Rep 2020;10:17319. DOI PubMed PMC
81. Allen MR, Burr DB. Bone modeling and remodeling. In: Burr DB, Allen MR, editors. Basic and Applied Bone Biology. Netherlands:
Elsevier; 2014. p. 75-90. DOI
82. Delgado-Calle J, Bellido T. Osteocytes and skeletal pathophysiology. Curr Mol Biol Rep 2015;1:157-67. DOI PubMed PMC
83. Canalis E. Notch in skeletal physiology and disease. Osteoporos Int 2018;29:2611-21. DOI PubMed PMC
84. Bai S, Kopan R, Zou W, et al. NOTCH1 regulates osteoclastogenesis directly in osteoclast precursors and indirectly via osteoblast
lineage cells. J Biol Chem 2008;283:6509-18. DOI PubMed
85. Fukushima H, Nakao A, Okamoto F, et al. The association of Notch2 and NF-kappaB accelerates RANKL-induced
osteoclastogenesis. Mol Cell Biol 2008;28:6402-12. DOI PubMed PMC