Page 37 - Read Online
P. 37

Page 14 of 15        Sabol et al. J Cancer Metastasis Treat 2021;7:20  https://dx.doi.org/10.20517/2394-4722.2021.35

                    Mol Cancer Ther 2010;9:3200-9.  DOI  PubMed  PMC
               55.       Colombo M, Platonova N, Giannandrea D, Palano MT, Basile A, Chiaramonte R. Re-establishing apoptosis competence in bone
                    associated cancers via communicative reprogramming induced through Notch signaling inhibition. Front Pharmacol 2019;10:145.
                    DOI  PubMed  PMC
               56.       Mirandola L, Apicella L, Colombo M, et al. Anti-Notch treatment prevents multiple myeloma cells localization to the bone marrow
                    via the chemokine system CXCR4/SDF-1. Leukemia 2013;27:1558-66.  DOI  PubMed
               57.       Guo D, Li C, Teng Q, Sun Z, Li Y, Zhang C. Notch1 overexpression promotes cell growth and tumor angiogenesis in myeloma.
                    Neoplasma 2013;60:33-40.  DOI  PubMed
               58.       Sabol HM, Amorim T, Kurihara N, et al. Autocrine and paracrine Notch receptor 3 signaling in the myeloma niche stimulates tumor
                    growth and bone destruction. J Bone Miner Res 2020;35:98.
               59.       Chiron D, Maïga S, Descamps G, et al. Critical role of the NOTCH ligand JAG2 in self-renewal of myeloma cells. Blood Cells Mol
                    Dis 2012;48:247-53.  DOI  PubMed
               60.       Berenstein R, Nogai A, Waechter M, et al. Multiple myeloma cells modify VEGF/IL-6 levels and osteogenic potential of bone
                    marrow stromal cells via Notch/miR-223. Mol Carcinog 2016;55:1927-39.  DOI  PubMed
               61.       Xu D, Hu J, Xu S, et al. Dll1/Notch activation accelerates multiple myeloma disease development by promoting CD138+ MM-cell
                    proliferation. Leukemia 2012;26:1402-5.  DOI  PubMed
               62.       Xu D, Hu J, De Bruyne E, et al. Dll1/Notch activation contributes to bortezomib resistance by upregulating CYP1A1 in multiple
                    myeloma. Biochem Biophys Res Commun 2012;428:518-24.  DOI  PubMed
               63.       Yin L. Chondroitin synthase 1 is a key molecule in myeloma cell-osteoclast interactions. J Biol Chem 2005;280:15666-72.  DOI
                    PubMed
               64.       Hu J, Zhu X, Lu Q. Antiproliferative effects of γ-secretase inhibitor, a Notch signalling inhibitor, in multiple myeloma cells and its
                    molecular mechanism of action. J Int Med Res 2013;41:1017-26.  DOI  PubMed
               65.       Das DS, Das A, Ray A, et al. Blockade of deubiquitylating enzyme USP1 inhibits DNA repair and triggers apoptosis in multiple
                    myeloma cells. Clin Cancer Res 2017;23:4280-9.  DOI  PubMed  PMC
               66.       Wang Y, Li W, Huang F, et al. Synthesis of sophocarpine triflorohydrazone and its proliferation inhibition and apoptosis induction
                    activity in myeloma cells through Notch3-p53 signaling activation. Environ Toxicol 2021;36:484-90.  DOI  PubMed
               67.       Bai Y, Su X. Updates to the drug-resistant mechanism of proteasome inhibitors in multiple myeloma. Asia Pac J Clin Oncol
                    2021;17:29-35.  DOI  PubMed
               68.       Abdi J, Chen G, Chang H. Drug resistance in multiple myeloma: latest findings and new concepts on molecular mechanisms.
                    Oncotarget 2013;4:2186-207.  DOI  PubMed  PMC
               69.       Nefedova Y, Cheng P, Alsina M, Dalton WS, Gabrilovich DI. Involvement of Notch-1 signaling in bone marrow stroma-mediated de
                    novo drug resistance of myeloma and other malignant lymphoid cell lines. Blood 2004;103:3503-10.  DOI  PubMed
               70.       Colombo M, Garavelli S, Mazzola M, et al. Multiple myeloma exploits Jagged1 and Jagged2 to promote intrinsic and bone marrow-
                    dependent drug resistance. Haematologica 2020;105:1925-36.  DOI  PubMed  PMC
               71.       Muguruma Y, Yahata T, Warita T, et al. Jagged1-induced Notch activation contributes to the acquisition of bortezomib resistance in
                    myeloma cells. Blood Cancer J 2017;7:650.  DOI  PubMed  PMC
               72.       Ding Y, Shen Y. Notch increased vitronection adhesion protects myeloma cells from drug induced apoptosis. Biochem Biophys Res
                    Commun 2015;467:717-22.  DOI  PubMed
               73.       Vacca A, Ribatti D, Roncali L, et al. Bone marrow angiogenesis and progression in multiple myeloma. Br J Haematol 1994;87:503-8.
                    DOI  PubMed
               74.       Scavelli C, Nico B, Cirulli T, et al. Vasculogenic mimicry by bone marrow macrophages in patients with multiple myeloma.
                    Oncogene 2008;27:663-74.  DOI  PubMed
               75.       Ria R, Melaccio A, Racanelli V, Vacca A. Anti-VEGF drugs in the treatment of multiple myeloma patients. J Clin Med 2020;9:1765.
                    DOI  PubMed  PMC
               76.       Vacca A, Ribatti D. Bone marrow angiogenesis in multiple myeloma. Leukemia 2006;20:193-9.  DOI  PubMed
               77.       Ria R, Roccaro AM, Merchionne F, Vacca A, Dammacco F, Ribatti D. Vascular endothelial growth factor and its receptors in
                    multiple myeloma. Leukemia 2003;17:1961-6.  DOI  PubMed
               78.       Palano MT, Giannandrea D, Platonova N, et al. Jagged ligands enhance the pro-angiogenic activity of multiple myeloma cells.
                    Cancers (Basel) 2020;12:2600.  DOI  PubMed  PMC
               79.       Saltarella I, Frassanito MA, Lamanuzzi A, et al. Homotypic and heterotypic activation of the Notch pathway in multiple myeloma-
                    enhanced angiogenesis: A novel therapeutic target? Neoplasia 2019;21:93-105.  DOI  PubMed  PMC
               80.       Mulcrone PL, Edwards SKE, Petrusca DN, Haneline LS, Delgado-Calle J, Roodman GD. Osteocyte Vegf-a contributes to myeloma-
                    associated angiogenesis and is regulated by Fgf23. Sci Rep 2020;10:17319.  DOI  PubMed  PMC
               81.       Allen MR, Burr DB. Bone modeling and remodeling. In: Burr DB, Allen MR, editors. Basic and Applied Bone Biology. Netherlands:
                    Elsevier; 2014. p. 75-90.  DOI
               82.       Delgado-Calle J, Bellido T. Osteocytes and skeletal pathophysiology. Curr Mol Biol Rep 2015;1:157-67.  DOI  PubMed  PMC
               83.       Canalis E. Notch in skeletal physiology and disease. Osteoporos Int 2018;29:2611-21.  DOI  PubMed  PMC
               84.       Bai S, Kopan R, Zou W, et al. NOTCH1 regulates osteoclastogenesis directly in osteoclast precursors and indirectly via osteoblast
                    lineage cells. J Biol Chem 2008;283:6509-18.  DOI  PubMed
               85.       Fukushima  H,  Nakao  A,  Okamoto  F,  et  al.  The  association  of  Notch2  and  NF-kappaB  accelerates  RANKL-induced
                    osteoclastogenesis. Mol Cell Biol 2008;28:6402-12.  DOI  PubMed  PMC
   32   33   34   35   36   37   38   39   40   41   42