Page 58 - Read Online
P. 58

Chang et al. J Cancer Metastasis Treat 2019;5:78  I  http://dx.doi.org/10.20517/2394-4722.2019.31                          Page 11 of 11

               71.  Hossan T, Nagarajan S, Baumgart SJ, Xie W, Magallanes RT, et al. Histone chaperone SSRP1 is essential for Wnt signaling pathway activity
                   during osteoblast differentiation. Stem Cells 2016;34:1369-76.
               72.  Hertel L, De Andrea M, Bellomo G, Santoro P, Landolfo S, et al. The HMG protein T160 colocalizes with DNA replication foci and is
                   down-regulated during cell differentiation. Exp Cell Res 1999;250:313-28.
               73.  Xiang YY, Wang DY, Tanaka M, Igarashi H, Naito Y, et al. Expression of structure-specific recognition protein mRNA in fetal kidney and
                   Fe-nitrilotriacetate-induced renal carcinoma in the rat. Cancer Lett 1996;106:271-8.
               74.  Garcia H, Fleyshman D, Kolesnikova K, Safina A, Commane M, et al. Expression of FACT in mammalian tissues suggests its role in
                   maintaining of undifferentiated state of cells. Oncotarget 2011;2:783-96.
               75.  Safina A, Garcia H, Commane M, Guryanova O, Degan S, et al. Complex mutual regulation of facilitates chromatin transcription (FACT)
                   subunits on both mRNA and protein levels in human cells. Cell Cycle 2013;12:2423-34.
               76.  Shen Z, Formosa T, Tantin D. FACT inhibition blocks induction but not maintenance of pluripotency. Stem Cells Dev 2018;27:1693-701.
               77.  Garcia H, Miecznikowski JC, Safina A, Commane M, Ruusulehto A, et al. Facilitates chromatin transcription complex is an “accelerator” of
                   tumor transformation and potential marker and target of aggressive cancers. Cell Rep 2013;4:159-73.
               78.  Fleyshman D, Prendergast L, Safina A, Paszkiewicz G, Commane M, et al. Level of FACT defines the transcriptional landscape and
                   aggressive phenotype of breast cancer cells. Oncotarget 2017;8:20525-42.
               79.  Hudson ME, Pozdnyakova I, Haines K, Mor G, Snyder M. Identification of differentially expressed proteins in ovarian cancer using high-
                   density protein microarrays. Proc Natl Acad Sci U S A 2007;104:17494-9.
               80.  Koman IE, Commane M, Paszkiewicz G, Hoonjan B, Pal S, et al. Targeting FACT complex suppresses mammary tumorigenesis in Her2/
                   neu transgenic mice. Cancer Prev Res (Phila) 2012;5:1025-35.
               81.  Matysiak J, Lesbats P, Mauro E, Lapaillerie D, Dupuy JW, et al. Modulation of chromatin structure by the FACT histone chaperone complex
                   regulates HIV-1 integration. Retrovirology 2017;14:39.
               82.  Gallastegui E, Millan-Zambrano G, Terme JM, Chavez S, Jordan A. Chromatin reassembly factors are involved in transcriptional
                   interference promoting HIV latency. J Virol 2011;85:3187-202.
               83.  Jean MJ, Zhou D, Fiches G, Kong W, Huang H, et al. Curaxin CBL0137 has the potential to reverse HIV-1 latency. J Med Virol
                   2019;91:1571-6.
               84.  Gurova KV, Hill JE, Guo C, Prokvolit A, Burdelya LG, et al. Small molecules that reactivate p53 in renal cell carcinoma reveal a NF-
                   kappaB-dependent mechanism of p53 suppression in tumors. Proc Natl Acad Sci U S A 2005;102:17448-53.
               85.  Gurova KV, Hill JE, Razorenova OV, Chumakov PM, Gudkov AV. p53 pathway in renal cell carcinoma is repressed by a dominant
                   mechanism. Cancer Res 2004;64:1951-8.
               86.  Dekker J, Mirny L. The 3D genome as moderator of chromosomal communication. Cell 2016;164:1110-21.
               87.  Katti MV, Ranjekar PK, Gupta VS. Differential distribution of simple sequence repeats in eukaryotic genome sequences. Mol Biol Evol
                   2001;18:1161-7.
               88.  Koschmann C, Nunez FJ, Mendez F, Brosnan-Cashman JA, Meeker AK, et al. Mutated chromatin regulatory factors as tumor drivers in
                   cancer. Cancer Res 2017;77:227-33.
               89.  Nacev BA, Feng L, Bagert JD, Lemiesz AE, Gao J, et al. The expanding landscape of “oncohistone” mutations in human cancers. Nature
                   2019;567:473-8.
               90.  Barman P, Reddy D, Bhaumik SR. Mechanisms of antisense transcription initiation with implications in gene expression, genomic integrity
                   and disease pathogenesis. Noncoding RNA 2019;5.
               91.  Modur V, Singh N, Mohanty V, Chung E, Muhammad B, et al. Defective transcription elongation in a subset of cancers confers
                   immunotherapy resistance. Nat Commun 2018;9:4410.
               92.  Wade JT, Grainger DC. Spurious transcription and its impact on cell function. Transcription 2018;9:182-9.
   53   54   55   56   57   58   59   60   61   62   63