Page 56 - Read Online
P. 56
Chang et al. J Cancer Metastasis Treat 2019;5:78 I http://dx.doi.org/10.20517/2394-4722.2019.31 Page 9 of 11
6. Saunders A, Werner J, Andrulis ED, Nakayama T, Hirose S, et al. Tracking FACT and the RNA polymerase II elongation complex through
chromatin in vivo. Science 2003;301:1094-6.
7. Hsieh FK, Kulaeva OI, Patel SS, Dyer PN, Luger K, et al. Histone chaperone FACT action during transcription through chromatin by RNA
polymerase II. Proc Natl Acad Sci U S A 2013;110:7654-9.
8. Orphanides G, Wu WH, Lane WS, Hampsey M, Reinberg D. The chromatin-specific transcription elongation factor FACT comprises human
SPT16 and SSRP1 proteins. Nature 1999;400:284-8.
9. Wittmeyer J, Formosa T. The Saccharomyces cerevisiae DNA polymerase alpha catalytic subunit interacts with Cdc68/Spt16 and with
Pob3, a protein similar to an HMG1-like protein. Mol Cell Biol 1997;17:4178-90.
10. Tan BC, Chien CT, Hirose S, Lee SC. Functional cooperation between FACT and MCM helicase facilitates initiation of chromatin DNA
replication. EMBO J 2006;25:3975-85.
11. Abe T, Sugimura K, Hosono Y, Takami Y, Akita M, et al. The histone chaperone facilitates chromatin transcription (FACT) protein maintains
normal replication fork rates. J Biol Chem 2011;286:30504-12.
12. Yang J, Zhang X, Feng J, Leng H, Li S, et al. The histone chaperone FACT contributes to DNA replication-coupled nucleosome assembly.
Cell Rep 2016;14:1128-41.
13. Kurat CF, Yeeles JTP, Patel H, Early A, Diffley JFX. Chromatin controls DNA replication origin selection, lagging-strand synthesis, and
replication fork rates. Mol Cell 2017;65:117-30.
14. Keller DM, Zeng X, Wang Y, Zhang QH, Kapoor M, et al. A DNA damage-induced p53 serine 392 kinase complex contains CK2, hSpt16,
and SSRP1. Mol Cell 2001;7:283-92.
15. Krohn NM, Stemmer C, Fojan P, Grimm R, Grasser KD. Protein kinase CK2 phosphorylates the high mobility group domain protein
SSRP1, inducing the recognition of UV-damaged DNA. J Biol Chem 2003;278:12710-5.
16. Heo K, Kim H, Choi SH, Choi J, Kim K, et al. FACT-mediated exchange of histone variant H2AX regulated by phosphorylation of H2AX
and ADP-ribosylation of Spt16. Mol Cell 2008;30:86-97.
17. Charles Richard JL, Shukla MS, Menoni H, Ouararhni K, Lone IN, et al. FACT assists base excision repair by boosting the remodeling
activity of RSC. PLoS Genet 2016;12:e1006221.
18. Murawska M, Ladurner AG. CENPs and sweet nucleosomes face the FACT. Trends Biochem Sci 2016;41:736-8.
19. Prendergast L, Muller S, Liu Y, Huang H, Dingli F, et al. The CENP-T/-W complex is a binding partner of the histone chaperone FACT.
Genes Dev 2016;30:1313-26.
20. Winkler DD, Luger K. The histone chaperone FACT: structural insights and mechanisms for nucleosome reorganization. J Biol Chem
2011;286:18369-74.
21. Evans DR, Brewster NK, Xu Q, Rowley A, Altheim BA, et al. The yeast protein complex containing cdc68 and pob3 mediates core-
promoter repression through the cdc68 N-terminal domain. Genetics 1998;150:1393-405.
22. Brewster NK, Johnston GC, Singer RA. A bipartite yeast SSRP1 analog comprised of Pob3 and Nhp6 proteins modulates transcription. Mol
Cell Biol 2001;21:3491-502.
23. Formosa T, Eriksson P, Wittmeyer J, Ginn J, Yu Y, et al. Spt16-Pob3 and the HMG protein Nhp6 combine to form the nucleosome-binding
factor SPN. EMBO J 2001;20:3506-17.
24. McCullough LL, Connell Z, Xin H, Studitsky VM, Feofanov AV, et al. Functional roles of the DNA-binding HMGB domain in the histone
chaperone FACT in nucleosome reorganization. J Biol Chem 2018;293:6121-33.
25. Stuwe T, Hothorn M, Lejeune E, Rybin V, Bortfeld M, et al. The FACT Spt16 “peptidase” domain is a histone H3-H4 binding module. Proc
Natl Acad Sci U S A 2008;105:8884-9.
26. Hondele M, Stuwe T, Hassler M, Halbach F, Bowman A, et al. Structural basis of histone H2A-H2B recognition by the essential chaperone
FACT. Nature 2013;499:111-4.
27. Kemble DJ, Whitby FG, Robinson H, McCullough LL, Formosa T, et al. Structure of the Spt16 middle domain reveals functional features
of the histone chaperone FACT. J Biol Chem 2013;288:10188-94.
28. Kemble DJ, McCullough LL, Whitby FG, Formosa T, Hill CP. FACT disrupts nucleosome structure by binding H2A-H2B with conserved
peptide motifs. Mol Cell 2015;60:294-306.
29. Wang T, Liu Y, Edwards G, Krzizike D, Scherman H, et al. The histone chaperone FACT modulates nucleosome structure by tethering its
components. Life Sci Alliance 2018;1:e201800107.
30. Valieva ME, Armeev GA, Kudryashova KS, Gerasimova NS, Shaytan AK, et al. Large-scale ATP-independent nucleosome unfolding by a
histone chaperone. Nat Struct Mol Biol 2016;23:1111-6.
31. Chang HW, Valieva ME, Safina A, Chereji RV, Wang J, et al. Mechanism of FACT removal from transcribed genes by anticancer drugs
curaxins. Sci Adv 2018;4:eaav2131.
32. Valieva ME, Gerasimova NS, Kudryashova KS, Kozlova AL, Kirpichnikov MP, et al. Stabilization of nucleosomes by histone tails and by
FACT revealed by spFRET microscopy. Cancers (Basel) 2017;9.
33. Hondele M, Ladurner AG. Catch me if you can: how the histone chaperone FACT capitalizes on nucleosome breathing. Nucleus
2013;4:443-9.
34. Safina A, Cheney P, Pal M, Brodsky L, Ivanov A, et al. FACT is a sensor of DNA torsional stress in eukaryotic cells. Nucleic Acids Res
2017;45:1925-45.
35. Gasparian AV, Burkhart CA, Purmal AA, Brodsky L, Pal M, et al. Curaxins: anticancer compounds that simultaneously suppress NF-
kappaB and activate p53 by targeting FACT. Sci Transl Med 2011;3:95ra74.
36. Li Y, Keller DM, Scott JD, Lu H. CK2 phosphorylates SSRP1 and inhibits its DNA-binding activity. J Biol Chem 2005;280:11869-75.
37. Tsunaka Y, Toga J, Yamaguchi H, Tate S, Hirose S, et al. Phosphorylated intrinsically disordered region of FACT masks its nucleosomal
DNA binding elements. J Biol Chem 2009;284:24610-21.
38. Tsunaka Y, Fujiwara Y, Oyama T, Hirose S, Morikawa K. Integrated molecular mechanism directing nucleosome reorganization by human