Page 57 - Read Online
P. 57

Page 10 of 11                           Chang et al. J Cancer Metastasis Treat 2019;5:78  I  http://dx.doi.org/10.20517/2394-4722.2019.31

                   FACT. Genes Dev 2016;30:673-86.
               39.  Gurova KV. Chromatin stability as a target for cancer treatment. Bioessays 2019;41:e1800141.
               40.  Nesher E, Safina A, Aljahdali I, Portwood S, Wang ES, et al. Role of chromatin damage and chromatin trapping of FACT in mediating the
                   anticancer cytotoxicity of DNA-binding small-molecule drugs. Cancer Res 2018;78:1431-43.
               41.  Burkhart C, Fleyshman D, Kohrn R, Commane M, Garrigan J, et al. Curaxin CBL0137 eradicates drug resistant cancer stem cells and
                   potentiates efficacy of gemcitabine in preclinical models of pancreatic cancer. Oncotarget 2014;5:11038-53.
               42.  Carter DR, Murray J, Cheung BB, Gamble L, Koach J, et al. Therapeutic targeting of the MYC signal by inhibition of histone chaperone
                   FACT in neuroblastoma. Sci Transl Med 2015;7:312ra176.
               43.  Dermawan JK, Hitomi M, Silver DJ, Wu Q, Sandlesh P, et al. Pharmacological targeting of the histone chaperone complex FACT
                   preferentially eliminates glioblastoma stem cells and prolongs survival in preclinical models. Cancer Res 2016;76:2432-42.
               44.  Kim M, Neznanov N, Wilfong CD, Fleyshman DI, Purmal AA, et al. Preclinical validation of a single-treatment infusion modality that can
                   eradicate extremity melanomas. Cancer Res 2016;76:6620-30.
               45.  Maluchenko NV, Chang HW, Kozinova MT, Valieva ME, Gerasimova NS, et al. Inhibiting the pro-tumor and transcription factor FACT:
                   mechanisms. Mol Biol (Mosk) 2016;50:599-610.
               46.  Kantidze OL, Luzhin AV, Nizovtseva EV, Safina A, Valieva ME, et al. The anti-cancer drugs curaxins target spatial genome organization.
                   Nat Commun 2019;10:1441.
               47.  Leonova K, Safina A, Nesher E, Sandlesh P, Pratt R, et al. TRAIN (transcription of repeats activates INterferon) in response to chromatin
                   destabilization induced by small molecules in mammalian cells. Elife 2018;7.
               48.  Formosa T. The role of FACT in making and breaking nucleosomes. Biochim Biophys Acta 2013;1819:247-55.
               49.  Mylonas C, Tessarz P. Transcriptional repression by FACT is linked to regulation of chromatin accessibility at the promoter of ES cells. Life
                   Sci Alliance 2018;1:e201800085.
               50.  Kolundzic E, Ofenbauer A, Bulut SI, Uyar B, Baytek G, et al. FACT sets a barrier for cell fate reprogramming in caenorhabditis elegans and
                   human cells. Dev Cell 2018;46:611-26.
               51.  Sandlesh P, Juang T, Safina A, Higgins MJ, Gurova KV. Uncovering the fine print of the CreERT2-LoxP system while generating a
                   conditional knockout mouse model of Ssrp1 gene. PLoS One 2018;13:e0199785.
               52.  True JD, Muldoon JJ, Carver MN, Poorey K, Shetty SJ, et al. The modifier of transcription 1 (Mot1) ATPase and Spt16 histone chaperone
                   co-regulate transcription through preinitiation complex assembly and nucleosome organization. J Biol Chem 2016;291:15307-19.
               53.  Tettey TT, Gao X, Shao W, Li H, Story BA, et al. A role for FACT in RNA polymerase II promoter-proximal pausing. Cell Rep
                   2019;27:3770-9.
               54.  Malone EA, Clark CD, Chiang A, Winston F. Mutations in SPT16/CDC68 suppress cis- and trans-acting mutations that affect promoter
                   function in Saccharomyces cerevisiae. Mol Cell Biol 1991;11:5710-7.
               55.  Chen P, Dong L, Hu M, Wang YZ, Xiao X, et al. Functions of FACT in breaking the nucleosome and maintaining its integrity at the single-
                   nucleosome level. Mol Cell 2018;71:284-93.
               56.  Kaplan CD, Laprade L, Winston F. Transcription elongation factors repress transcription initiation from cryptic sites. Science
                   2003;301:1096-9.
               57.  Duina AA, Rufiange A, Bracey J, Hall J, Nourani A, et al. Evidence that the localization of the elongation factor Spt16 across transcribed
                   genes is dependent upon histone H3 integrity in Saccharomyces cerevisiae. Genetics 2007;177:101-12.
               58.  Jamai A, Puglisi A, Strubin M. Histone chaperone spt16 promotes redeposition of the original h3-h4 histones evicted by elongating RNA
                   polymerase. Mol Cell 2009;35:377-83.
               59.  Hainer SJ, Charsar BA, Cohen SB, Martens JA. Identification of mutant versions of the Spt16 histone chaperone that are defective for
                   transcription-coupled nucleosome occupancy in saccharomyces cerevisiae. G3 (Bethesda) 2012;2:555-67.
               60.  Keller DM, Lu H. p53 serine 392 phosphorylation increases after UV through induction of the assembly of the CK2.hSPT16.SSRP1
                   complex. J Biol Chem 2002;277:50206-13.
               61.  Dinant C, Ampatziadis-Michailidis G, Lans H, Tresini M, Lagarou A, et al. Enhanced chromatin dynamics by FACT promotes
                   transcriptional restart after UV-induced DNA damage. Mol Cell 2013;51:469-79.
               62.  Kari V, Shchebet A, Neumann H, Johnsen SA. The H2B ubiquitin ligase RNF40 cooperates with SUPT16H to induce dynamic changes in
                   chromatin structure during DNA double-strand break repair. Cell Cycle 2011;10:3495-504.
               63.  Gao Y, Li C, Wei L, Teng Y, Nakajima S, et al. SSRP1 cooperates with PARP and XRCC1 to facilitate single-strand DNA break repair by
                   chromatin priming. Cancer Res 2017;77:2674-85.
               64.  O’Donnell AF, Brewster NK, Kurniawan J, Minard LV, Johnston GC, et al. Domain organization of the yeast histone chaperone FACT: the
                   conserved N-terminal domain of FACT subunit Spt16 mediates recovery from replication stress. Nucleic Acids Res 2004;32:5894-906.
               65.  Herrera-Moyano E, Mergui X, Garcia-Rubio ML, Barroso S, Aguilera A. The yeast and human FACT chromatin-reorganizing complexes
                   solve R-loop-mediated transcription-replication conflicts. Genes Dev 2014;28:735-48.
               66.  Cao S, Bendall H, Hicks GG, Nashabi A, Sakano H, et al. The high-mobility-group box protein SSRP1/T160 is essential for cell viability in
                   day 3.5 mouse embryos. Mol Cell Biol 2003;23:5301-7.
               67.  Koltowska K, Apitz H, Stamataki D, Hirst EM, Verkade H, et al. Ssrp1a controls organogenesis by promoting cell cycle progression and
                   RNA synthesis. Development 2013;140:1912-8.
               68.  Duroux M, Houben A, Ruzicka K, Friml J, Grasser KD. The chromatin remodelling complex FACT associates with actively transcribed
                   regions of the Arabidopsis genome. Plant J 2004;40:660-71.
               69.  Lolas IB, Himanen K, Gronlund JT, Lynggaard C, Houben A, et al. The transcript elongation factor FACT affects Arabidopsis vegetative
                   and reproductive development and genetically interacts with HUB1/2. Plant J 2010;61:686-97.
               70.  Lolis AA, Londhe P, Beggs BC, Byrum SD, Tackett AJ, et al. Myogenin recruits the histone chaperone facilitates chromatin transcription
                   (FACT) to promote nucleosome disassembly at muscle-specific genes. J Biol Chem 2013;288:7676-87.
   52   53   54   55   56   57   58   59   60   61   62