Page 95 - Read Online
P. 95

Page 288                        Zhang et al. Intell Robot 2022;2(3):275­97  I http://dx.doi.org/10.20517/ir.2022.20


                   Machine Learning, ICML 2022, 17­23 July 2022, Baltimore, Maryland, USA. vol. 162 of Proceedings of Machine Learning Research.
                   PMLR; 2022. pp. 19561–79. Avaialble from: https://proceedings.mlr.press/v162/seo22a.html [Last accessed on 30 Aug 2022].
               97.  Mandi Z, Abbeel P, James S. On the Effectiveness of Fine­tuning Versus Meta­reinforcement Learning. arXiv preprint arXiv:220603271
                   2022. DOI
               98.  Haarnoja T, Zhou A, Ha S, et al. Learning to walk via deep reinforcement learning 2019. DOI
               99.  Yang Y, Caluwaerts K, Iscen A, et al. Data efficient reinforcement learning for legged robots. In: Kaelbling LP, Kragic D, Sugiura K,
                   editors. 3rd Annual Conference on Robot Learning, CoRL 2019, Osaka, Japan, October 30 ­ November 1, 2019, Proceedings. vol. 100 of
                   Proceedings of Machine Learning Research. PMLR; 2019. pp. 1–10. Avaialble from: http://proceedings.mlr.press/v100/yang20a.html
                   [Last accessed on 30 Aug 2022].
               100. Tsounis V, Alge M, Lee J, Farshidian F, Hutter M. DeepGait: planning and control of quadrupedal gaits using deep reinforcement
                   learning. IEEE Robot Autom Lett 2020;5:3699–706. DOI
               101. Da X, Xie Z, Hoeller D, et al. Learning a contact­adaptive controller for robust, efficient legged locomotion. PMLR; 2020. Available
                   from: https://proceedings.mlr.press/v155/da21a.html [Lasta accessed on 30 Aug 2022].
               102. Liang J, Makoviychuk V, Handa A, et al.  GPU­accelerated robotic simulation for distributed reinforcement learning.  CoRR
                   2018;abs/1810.05762. Avaialble from: http://arxiv.org/abs/1810.05762 [Last accessed on 30 Aug 2022].
               103. Escontrela A, Yu G, Xu P, Iscen A, Tan J. Zero­shot terrain generalization for visual locomotion policies. CoRR 2020;abs/2011.05513.
                   Avaialble from: https://arxiv.org/abs/2011.05513 [Last accessed on 30 Aug 2022].
               104. Jiang Y, Zhang T, Ho D, et al. SimGAN: hybrid simulator identification for domain adaptation via adversarial reinforcement learning
                   2021:2884–90. Available from: https://doi.org/10.1109/ICRA48506.2021.9561731 [last accessed on 30 Aug 2022].
               105. Tan W, Fang X, Zhang W, et al. A hierarchical framework for quadruped locomotion based on reinforcement learning. In: IEEE/RSJ
                   International Conference on Intelligent Robots and Systems, IROS 2021, Prague, Czech Republic, September 27 ­ Oct. 1, 2021. IEEE;
                   2021. pp. 8462–68. Avaialble from: https://doi.org/10.1109/IROS51168.2021.9636757 [Last accessed on 30 Aug 2022].
               106. Michel O. WebotsTM: professional mobile robot simulation. CoRR 2004;abs/cs/0412052. Avaialble from: http://arxiv.org/abs/cs/041
                   2052 [Last accessed on 30 Aug 2022].
               107. Fu Z, Kumar A, Malik J, Pathak D. Minimizing energy consumption leads to the emergence of gaits in legged robots. CoRR
                   2021;abs/2111.01674. Avaialble from: https://arxiv.org/abs/2111.01674 [Last accessed on 30 Aug 2022].
               108. Kim S, Sorokin M, Lee J, Ha S. Human motion control of quadrupedal robots using deep reinforcement learning. arXiv preprint
                   arXiv:220413336 2022. Avaialble from: http://www.roboticsproceedings.org/rss18/p021.pdf [Last accessed on 30 Aug 2022].
               109. Bogdanovic M, Khadiv M, Righetti L. Model­free reinforcement learning for robust locomotion using trajectory optimization for explo­
                   ration. arXiv preprint arXiv:210706629 2021. DOI
               110. Fernbach P, Tonneau S, Stasse O, Carpentier J, Taïx M. C­CROC: continuous and convex resolution of centroidal dynamic trajectories
                   for legged robots in multicontact scenarios. IEEE Trans Robot 2020;36:676–91. DOI
               111. Zhang H, Starke S, Komura T, Saito J. Mode­adaptive neural networks for quadruped motion control. ACM Trans Graph (TOG)
                   2018;37:1–11. DOI
               112. Feldman A, Goussev V, Sangole A, Levin M. Threshold position control and the principle of minimal interaction in motor actions. Progr
                   brain res 2007 02;165:267–81. DOI
               113. Winkler AW, Bellicoso CD, Hutter M, Buchli J. Gait and trajectory optimization for legged systems through phase­based end­effector
                   parameterization. IEEE Robot Autom Lett 2018;3:1560–67. DOI
               114. Liu H, Jia W, Bi L. Hopf oscillator based adaptive locomotion control for a bionic quadruped robot. 2017 IEEE Int Confer Mechatr
                   Autom (ICMA) 2017:949–54. DOI
               115. Carlo JD, Wensing PM, Katz B, Bledt G, Kim S. Dynamic locomotion in the MIT cheetah 3 through convex model­predictive control.
                   In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); 2018. pp. 1–9. DOI
               116. Bellicoso D, Jenelten F, Fankhauser P, et al. Dynamic locomotion and whole­body control for quadrupedal robots. 2017 IEEE/RSJ Int
                   Conf Intell Robots Sys (IROS) 2017:3359–65. DOI
               117. Sethian JA. Fast marching methods. SIAM Rev 1999;41:199–235. DOI
               118. Ponton B, Khadiv M, Meduri A, Righetti L. Efficient multi­contact pattern generation with sequential convex approximations of the
                   centroidal dynamics. CoRR 2020;abs/2010.01215. Avaialble from: https://arxiv.org/abs/2010.01215 [Last accessed on 30 Aug 2022].
               119. Zhang T, McCarthy Z, Jow O, et al. Deep imitation learning for complex manipulation tasks from virtual reality teleoperation. CoRR
                   2017;abs/1710.04615. Avaialble from: http://arxiv.org/abs/1710.04615 [Last accessed on 30 Aug 2022].
               120. Thor M, Kulvicius T, Manoonpong P. Generic neural locomotion control framework for legged robots. IEEE Trans Neural Netw Learn
                   Syst 2021;32:4013–25. DOI
   90   91   92   93   94   95   96   97   98   99   100