Page 95 - Read Online
P. 95
Page 288 Zhang et al. Intell Robot 2022;2(3):27597 I http://dx.doi.org/10.20517/ir.2022.20
Machine Learning, ICML 2022, 1723 July 2022, Baltimore, Maryland, USA. vol. 162 of Proceedings of Machine Learning Research.
PMLR; 2022. pp. 19561–79. Avaialble from: https://proceedings.mlr.press/v162/seo22a.html [Last accessed on 30 Aug 2022].
97. Mandi Z, Abbeel P, James S. On the Effectiveness of Finetuning Versus Metareinforcement Learning. arXiv preprint arXiv:220603271
2022. DOI
98. Haarnoja T, Zhou A, Ha S, et al. Learning to walk via deep reinforcement learning 2019. DOI
99. Yang Y, Caluwaerts K, Iscen A, et al. Data efficient reinforcement learning for legged robots. In: Kaelbling LP, Kragic D, Sugiura K,
editors. 3rd Annual Conference on Robot Learning, CoRL 2019, Osaka, Japan, October 30 November 1, 2019, Proceedings. vol. 100 of
Proceedings of Machine Learning Research. PMLR; 2019. pp. 1–10. Avaialble from: http://proceedings.mlr.press/v100/yang20a.html
[Last accessed on 30 Aug 2022].
100. Tsounis V, Alge M, Lee J, Farshidian F, Hutter M. DeepGait: planning and control of quadrupedal gaits using deep reinforcement
learning. IEEE Robot Autom Lett 2020;5:3699–706. DOI
101. Da X, Xie Z, Hoeller D, et al. Learning a contactadaptive controller for robust, efficient legged locomotion. PMLR; 2020. Available
from: https://proceedings.mlr.press/v155/da21a.html [Lasta accessed on 30 Aug 2022].
102. Liang J, Makoviychuk V, Handa A, et al. GPUaccelerated robotic simulation for distributed reinforcement learning. CoRR
2018;abs/1810.05762. Avaialble from: http://arxiv.org/abs/1810.05762 [Last accessed on 30 Aug 2022].
103. Escontrela A, Yu G, Xu P, Iscen A, Tan J. Zeroshot terrain generalization for visual locomotion policies. CoRR 2020;abs/2011.05513.
Avaialble from: https://arxiv.org/abs/2011.05513 [Last accessed on 30 Aug 2022].
104. Jiang Y, Zhang T, Ho D, et al. SimGAN: hybrid simulator identification for domain adaptation via adversarial reinforcement learning
2021:2884–90. Available from: https://doi.org/10.1109/ICRA48506.2021.9561731 [last accessed on 30 Aug 2022].
105. Tan W, Fang X, Zhang W, et al. A hierarchical framework for quadruped locomotion based on reinforcement learning. In: IEEE/RSJ
International Conference on Intelligent Robots and Systems, IROS 2021, Prague, Czech Republic, September 27 Oct. 1, 2021. IEEE;
2021. pp. 8462–68. Avaialble from: https://doi.org/10.1109/IROS51168.2021.9636757 [Last accessed on 30 Aug 2022].
106. Michel O. WebotsTM: professional mobile robot simulation. CoRR 2004;abs/cs/0412052. Avaialble from: http://arxiv.org/abs/cs/041
2052 [Last accessed on 30 Aug 2022].
107. Fu Z, Kumar A, Malik J, Pathak D. Minimizing energy consumption leads to the emergence of gaits in legged robots. CoRR
2021;abs/2111.01674. Avaialble from: https://arxiv.org/abs/2111.01674 [Last accessed on 30 Aug 2022].
108. Kim S, Sorokin M, Lee J, Ha S. Human motion control of quadrupedal robots using deep reinforcement learning. arXiv preprint
arXiv:220413336 2022. Avaialble from: http://www.roboticsproceedings.org/rss18/p021.pdf [Last accessed on 30 Aug 2022].
109. Bogdanovic M, Khadiv M, Righetti L. Modelfree reinforcement learning for robust locomotion using trajectory optimization for explo
ration. arXiv preprint arXiv:210706629 2021. DOI
110. Fernbach P, Tonneau S, Stasse O, Carpentier J, Taïx M. CCROC: continuous and convex resolution of centroidal dynamic trajectories
for legged robots in multicontact scenarios. IEEE Trans Robot 2020;36:676–91. DOI
111. Zhang H, Starke S, Komura T, Saito J. Modeadaptive neural networks for quadruped motion control. ACM Trans Graph (TOG)
2018;37:1–11. DOI
112. Feldman A, Goussev V, Sangole A, Levin M. Threshold position control and the principle of minimal interaction in motor actions. Progr
brain res 2007 02;165:267–81. DOI
113. Winkler AW, Bellicoso CD, Hutter M, Buchli J. Gait and trajectory optimization for legged systems through phasebased endeffector
parameterization. IEEE Robot Autom Lett 2018;3:1560–67. DOI
114. Liu H, Jia W, Bi L. Hopf oscillator based adaptive locomotion control for a bionic quadruped robot. 2017 IEEE Int Confer Mechatr
Autom (ICMA) 2017:949–54. DOI
115. Carlo JD, Wensing PM, Katz B, Bledt G, Kim S. Dynamic locomotion in the MIT cheetah 3 through convex modelpredictive control.
In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); 2018. pp. 1–9. DOI
116. Bellicoso D, Jenelten F, Fankhauser P, et al. Dynamic locomotion and wholebody control for quadrupedal robots. 2017 IEEE/RSJ Int
Conf Intell Robots Sys (IROS) 2017:3359–65. DOI
117. Sethian JA. Fast marching methods. SIAM Rev 1999;41:199–235. DOI
118. Ponton B, Khadiv M, Meduri A, Righetti L. Efficient multicontact pattern generation with sequential convex approximations of the
centroidal dynamics. CoRR 2020;abs/2010.01215. Avaialble from: https://arxiv.org/abs/2010.01215 [Last accessed on 30 Aug 2022].
119. Zhang T, McCarthy Z, Jow O, et al. Deep imitation learning for complex manipulation tasks from virtual reality teleoperation. CoRR
2017;abs/1710.04615. Avaialble from: http://arxiv.org/abs/1710.04615 [Last accessed on 30 Aug 2022].
120. Thor M, Kulvicius T, Manoonpong P. Generic neural locomotion control framework for legged robots. IEEE Trans Neural Netw Learn
Syst 2021;32:4013–25. DOI