Page 91 - Read Online
P. 91

Page 284                        Zhang et al. Intell Robot 2022;2(3):275­97  I http://dx.doi.org/10.20517/ir.2022.20


               Financial support and sponsorship
               This work was supported by the National Science and Technology Innovation 2030 - Major Project (Grant
               No. 2022ZD0208800), and NSFC General Program (Grant No. 62176215).


               Conflicts of interest
               All authors declared that there are no conflicts of interest.


               Ethical approval and consent to participate
               Not applicable.

               Consent for publication
               Not applicable.


               Copyright
               © The Author(s) 2022.



               REFERENCES
               1.  Bledt G, Wensing PM, Ingersoll S, Kim S. Contact Model Fusion for Event­Based Locomotion in Unstructured Terrains. In: 2018 IEEE
                   International Conference on Robotics and Automation (ICRA); 2018. pp. 4399–406. DOI
               2.  Hwangbo J, Bellicoso CD, Fankhauser P, Hutter M. Probabilistic foot contact estimation by fusing information from dynamics and
                   differential/forward kinematics. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); 2016. pp.
                   3872–78. DOI
               3.  Camurri M, Fallon M, Bazeille S, et al. Probabilistic contact estimation and impact detection for state estimation of quadruped robots.
                   IEEE Robotics and Automation Letters 2017;2:1023–30. DOI
               4.  Bloesch M, Gehring C, Fankhauser P, et al. State estimation for legged robots on unstable and slippery terrain. In: 2013 IEEE/RSJ
                   International Conference on Intelligent Robots and Systems; 2013. pp. 6058–64. DOI
               5.  Sutton RS, Barto AG.  Reinforcement learning: an introduction.  IEEE Trans Neural Netw 2005;16:285–86.  Available from:
                   https://books.google.com.hk/books?hl=zh­CN&lr=&id=uWV0DwAAQBAJ&oi=fnd&pg=PR7&dq=Reinforcement+Learning:
                   +An+Introduction&ots=mitFv1__l3&sig=tpgx07M0IomIGA4K13idTvhYFbo&redir_esc=y#v=onepage&q=Reinforcement%20L
                   earning%3A%20An%20Introduction&f=false [Last accessed on 30 Aug 2022].
               6.  Hwangbo J, Lee J, Dosovitskiy A, et al. Learning agile and dynamic motor skills for legged robots. Sci Robot 2019;4. DOI
               7.  Lee J, Hwangbo J, Wellhausen L, Koltun V, Hutter M. Learning quadrupedal locomotion over challenging terrain. Sci Robot 2020;5.
                   Available from: https://robotics.sciencemag.org/content/5/47/eabc5986 [last accessed on 30 Aug 2022].
               8.  Miki T, Lee J, Hwangbo J, et al. Learning robust perceptive locomotion for quadrupedal robots in the wild. Sci Robot 2022;7:eabk2822.
                   Available from: https://www.science.org/doi/abs/10.1126/scirobotics.abk2822 [Last accessed on 30 Aug 2022].
               9.  Yang C, Yuan K, Zhu Q, Yu W, Li Z. Multi­expert learning of adaptive legged locomotion. Sci Robot 2020;5. Available from: https:
                   //robotics.sciencemag.org/content/5/49/eabb2174 [Last accessed on 30 Aug 2022].
               10.  Peng XB, Coumans E, Zhang T, et al. Learning agile robotic locomotion skills by imitating animals. In: Robotics: Science and Systems;
                   2020. DOI
               11.  Fu Z, Kumar A, Agarwal A, et al. Coupling vision and proprioception for navigation of legged robots. arXiv preprint arXiv:211202094
                   2021. Available from: https://openaccess.thecvf.com/content/CVPR2022/html/Fu_Coupling_Vision_and_Proprioception_for_Navigat
                   ion_of_Legged_Robots_CVPR_2022_paper.html [Last accessed on 30 Aug 2022].
               12.  Bohez S, Tunyasuvunakool S, Brakel P, et al. Imitate and repurpose: learning reusable robot movement skills from human and animal
                   behaviors. arXiv preprint arXiv:220317138 2022. DOI
               13.  Yang R, Zhang M, Hansen N, Xu H, Wang X. Learning vision­guided quadrupedal locomotion end­to­end with cross­modal transformers
                   .
               14.  Zhang T, Mo H. Reinforcement learning for robot research: a comprehensive review and open issues. Int J Advanc Robot Syst
                   2021;18:17298814211007305. DOI
               15.  Ibarz J, Tan J, Finn C, et al. How to train your robot with deep reinforcement learning: lessons we have learned. Int J Robot Res
                   2021;40:698–721. DOI
               16.  Koos S, Mouret JB, Doncieux S. Crossing the reality gap in evolutionary robotics by promoting transferable controllers. In: Conference
                   on Genetic and Evolutionary Computation. United States: ACM, publisher; 2010. pp. 119–26. DOI Available from: https://hal.archives
                   ­ouvertes.fr/hal­00633927.
               17.  Zhao W, Queralta JP, Westerlund T. Sim­to­real transfer in deep reinforcement learning for robotics: a survey. In: 2020 IEEE Symposium
                   Series on Computational Intelligence (SSCI). IEEE; 2020. pp. 737–44. DOI
               18.  Yue J. Learning locomotion for legged robots based on reinforcement learning: a survey. In: 2020 International Conference on Electrical
                   Engineering and Control Technologies (CEECT). IEEE; 2020. pp. 1–7. DOI
   86   87   88   89   90   91   92   93   94   95   96