Page 42 - Read Online
P. 42

Yang et al. Intell Robot 2022;2(3):223­43  I http://dx.doi.org/10.20517/ir.2022.19  Page 235
                                                   [                  ]
                                                           ˜  (  −1) )  ∗
                                                    −(      ⊗      
                                               ˜
                                               Φ =                  (0)  ≺ 0                          (26)
                                                          ˜
                                                                   ˜
                                                         Ξ        Υ   
               hold for any    ∈ O     ,    ∈ O     ,    ∈ N     , where
                                              [1,          ]
               ˇ
                                                                                          ˜
                                 ˇ       ˜
                                                  ˜
                                                            ˇ
               Ξ = [   ˇ              L ˇ           0   M ] , Ψ 23 = [(      ⊗       ) 0 0] ,       =       ⊗    + (      L    +    0   M    ) ⊗      ,
                                     
                ˇ
                             ˇ
                                           ˜
                                                                        ˜
                                                         ˜
                                        ˜
                         ˜
                                                                 ˜
               L    = L    ⊗      , M    = M    ⊗      , Z    =         {      ⊗       ,       ⊗       ,       ⊗       } ∈ R 3        ×3         ,
                                                                  ˜
                                                                     ˜
                                                  ˇ       ˜
                                                                               ˜
                                 ˇ    ˇ   
               ˜
                                                                         ˜
                                                                            ˜
                                                                                  ˜
               Ξ = [   ˇ              L ˇ           0   M                  L ˇ           0   M ] , Υ    =         {Υ 1 , Υ 1 , Υ 1 , Υ 2 , Υ 2 , Υ 2 },
                                                         (0)
                                                     
                        
                                         ˜
                                                                                                   ˜   
                                                                                           ˜
                ˜
                                                   ˜
                                                            ˜   
                                                                ˜
                                                                          
                                                                                  (0)
                                          (0)
               Υ 1 = Σ            Σ   ∈O               (  )  (      ⊗       −       ⊗       −       ⊗    ), Υ 2 = (1 − ¯    )(      ⊗       −       ⊗       −       ⊗    ),
                       =1       ¯                                                                     
                        
                                                  ¯
                                                       ¯
                                        (  ), ¯      = ¯    + (1 −       )  ,       = Σ   ∈O          ,
                ¯       = Σ  Σ   ∈O                                
                       =1
               thensystems(6)and(8)isleader-followingmeansquareconsensusunderincompletelyaccessiblesemi-Markov
               kernelofswitchingtopologiesandpossessa H ∞ performanceindex ˆ  . Moreover, thecontrollergainsaregiven
               by       = (     )    (   )      .
                           
                            −1    ˜    −1 ˜
                                    
               Proof Since the stability proof of the system at non-switching time of topologies is independent of the semi-
               Markov kernel, the corresponding proof is easy to obtain by Theorem 1. For incompletely accessible semi-
               Markov kernel, only the stability of the system at the switching time is given in this theorem.
               Similar to inequality (13), we have
                     {                       }
                   E   (  (     +1 ),   (     +1 ),   (     +1 )) −   (  (     +1 − 1),   (     +1 − 1),   (     +1 − 1))
                     {                                       }
                                 ˜        (  (     +1 ))  ˜                      (  (     +1 −1))
                  =E    (     +1 − 1)A (      ⊗        )A      (     +1 − 1) −    (     +1 − 1)(      ⊗        )  (     +1 − 1)
                                    
                     {                                                          }
                                                   (     +1 )
                                                    ˜   
                         
                                                                    ˜
                  =E    (     +1 − 1)Σ            Σ   ∈O  A (      ⊗       (  (     +1 )) )A      (     +1 − 1)
                                       +1 =1                                                          (27)
                                             Ω   
                                       (  (     +1 −1))
                    −    (     +1 − 1)(      ⊗        )  (     +1 − 1)
                     {                                                  }
                                                 (  )
                                                ˜        (0)  ˜
                  =E    (     +1 − 1)Σ         A (      ⊗       )A      (     +1 − 1)
                                    =1  Σ   ∈O     
                                           Ω   
                                       (  −1)
                    −    (     +1 − 1)(      ⊗        )  (     +1 − 1)
               for   (     +1 ) =   ,   (     +1 ) = 0,   (     +1 − 1) =   ,   (     +1 − 1) =    − 1 =      +1 − 1. For Π(  ),    ∈ O      ,    ∈ O     ,
               the equation (27) can be written as
                          {                        }
                         E   (  (     +1 ),   (     +1 ),   (     +1 )) −   (  (     +1 − 1),   (     +1 − 1),   (     +1 − 1))
                                    [
                                         
                                                         (  ) (  ¯    ¯ ¯  2 ¯    ¯ ¯  2 ¯    ¯ ¯  )
                        =   (     +1 − 1) Σ              P      +    L PL    +    M PM   
                                        =1  Σ   ∈O                         0      
                                                 Ω   
                                                                            ]
                                              (  ) (  2 ¯    ¯ ¯  2 ¯    ¯ ¯  )
                                             ¯    ¯ ¯
                         + Σ                   P      +    L PL    +    M PM      (     +1 − 1)
                              =1  Σ   ∈O                         0      
                                       Ω   
                                                                                                      (28)
                                            (  −1)
                         −    (     +1 − 1)(      ⊗        )  (     +1 − 1)
                                    [
                                                       (  ) (                        )
                                                                           2 ¯    ¯ ¯
                            
                                                                2 ¯    ¯ ¯
                                                      ¯    ¯ ¯
                        =   (     +1 − 1) Σ            Σ   ∈O          P      +    L PL    +    M PM   
                                        =1                                 0      
                                                 Ω   
                                                      
                                              (  )  Ω    − ¯    (                     )  ]
                                                                            2 ¯    ¯ ¯
                                                       ¯    ¯ ¯
                                                                 2 ¯    ¯ ¯
                         + Σ            Σ   ∈O       ×     P      +    L PL    +    M PM      (     +1 − 1)
                              =1                                            0      
                                      Ω    − ¯     Ω   
                                            (  −1)
                         −    (     +1 − 1)(      ⊗        )  (     +1 − 1)
                                                             
                   ¯         (0)  ∈ R         ×                              (  ) = Ω    − ¯    ,    ∈ O, it can be found that
                                                                                  
               withP =       ⊗            . Noting the fact Σ  Σ   ∈O     
                                                            =1
   37   38   39   40   41   42   43   44   45   46   47