Page 74 - Read Online
P. 74

Page 68                              Harib et al. Intell Robot 2022;2(1):37-71  https://dx.doi.org/10.20517/ir.2021.19

                    Syst, Man, Cybern 1983;SMC-13:834-46.  DOI
               84.       Michie D, Chambers RA. Boxes: an experiment in adaptive control. Edinburgh, UK: Oliver and Boyd; 1968. p. 137-52.
               85.       Michie D, Chambers RA. Boxes’ as a model of pattern-formation. 1st ed. Edinburgh: Edinburgh univ. press; 1968. p. 206-15.  DOI
               86.       Anderson CW. Strategy Learning with multilayer connectionist representations. proceedings of the fourth international workshop on
                    machine learning. Elsevier; 1987. p. 103-14.  DOI
               87.       Anderson C. Learning to control an inverted pendulum using neural networks. IEEE Control Syst Mag 1989;9:31-7.  DOI
               88.       Lin CS, Kim H. CMAC-based adaptive critic self-learning control. IEEE Trans Neural Netw 1991;2:530-3.  DOI  PubMed
               89.       A  l b u s    J S .    T h e o r e t i c a l    a n d    e x p e r i m  e n t a l    a s p e c t s    o f    a    C e r e b e l l a r    M  o d e l .    A  v a i l a b l e    f r o m  :
                    https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=820153 [Last accessed on 8 Mar 2022].
               90.       Albus JS. A new approach to manipulator control: the cerebellar model articulation controller (CMAC). J Dyn Syst Meas Control
                    1975;97:220-7.  DOI
               91.       Albus JS. Mechanisms of planning and problem solving in the brain. Math Biosci 1979;45:247-93.  DOI
               92.       Albus JS. Brains, behavior, and robotics. 1st ed. Peterborough: BYTE Books; 1981.
               93.       Huang, Chien-lo Huang. Control of an inverted pendulum using grey prediction model. IEEE Trans on Ind Applicat 2000;36:452-8.
                    DOI
               94.       Pathak K, Franch J, Agrawal S. Velocity and position control of a wheeled inverted pendulum by partial feedback linearization. IEEE
                    Trans Robot 2005;21:505-13.  DOI
               95.       Li, Jun Luo. Adaptive Robust dynamic balance and motion controls of mobile wheeled inverted pendulums. IEEE Trans Contr Syst
                    Technol 2009;17:233-41.  DOI
               96.       Chaoui H, Gueaieb W, Yagoub MCE. ANN-based adaptive motion and posture control of an inverted pendulum with unknown
                    dynamics. 2009 3rd International Conference on Signals, Circuits and Systems (SCS); 2009 Nov 6-8; Medenine, Tunisia. IEEE;
                    2009. p. 1-6.  DOI
               97.       Guez A, Ahmad Z. Solution to the inverse kinematics problem in robotics by neural networks. IEEE 1988 International Conference
                    on Neural Networks; 1988 Jul 24-27; San Diego, CA, USA. IEEE; 1988. p. 617-24.  DOI
               98.       . Elsley. A learning architecture for control based on back-propagation neural networks. IEEE 1988 International Conference on
                    Neural Networks; 1988 Jul 24-27; San Diego, CA, USA. IEEE; 1988. p. 587-94.  DOI
               99.       Jamshidi M, Horne B, Vadiee N. A neural network-based controller for a two-link robot. 29th IEEE Conference on Decision and
                    Control; 1990 Dec 5-7; Honolulu, HI, USA. IEEE; 1990. p. 3256-7.  DOI
               100.      Karakasoglu A, Sundareshan MK. Decentralized variable structure control of robotic manipulators: neural computational algorithms.
                    29th IEEE Conference on Decision and Control; 1990 Dec 5-7; Honolulu, HI, USA. IEEE; 1990. p. 3258-9.  DOI
               101.      Xu G, Scherrer H, Schweitzer G. Application of neural networks on robot grippers. 1990 IJCNN International Joint Conference on
                    Neural Networks; 1990 Jun 17-21; San Diego, CA, USA. IEEE; 1990. p. 337-42.  DOI
               102.      Wilhelmsen K, Cotter N. Neural network based controllers for a single-degree-of-freedom robotic arm. 1990 IJCNN International
                    Joint Conference on Neural Networks; 1990 Jun 17-21; San Diego, CA, USA. IEEE; 1990. p. 407-13.  DOI
               103.      Miller WT, Glanz FH, Kraft LG. Application of a general learning algorithm to the control of robotic manipulators. Int J Rob Res
                    1987;6:84-98.  DOI
               104.      Miller W. Sensor-based control of robotic manipulators using a general learning algorithm. IEEE J Robot Automat 1987;3:157-65.
                    DOI
               105.      Miller WT. Real time learned sensor processing and motor control for a robot with vision. Neural Networks 1988;1:347.  DOI
               106.      Miller WT, Hewes RP. Real time experiments in neural network based learning control during high speed nonrepetitive robotic
                    operations. Proceedings IEEE International Symposium on Intelligent Control 1988; 1988 Aug 24-26; Arlington, VA, USA. IEEE;
                    1988. p. 513-8.  DOI
               107.      Miller W. Real-time application of neural networks for sensor-based control of robots with vision. IEEE Trans Syst, Man, Cybern
                    1989;19:825-31.  DOI
               108.      Miller W, Glanz F, Kraft L. CMAC: an associative neural network alternative to backpropagation. Proc IEEE 1990;78:1561-7.  DOI
               109.      Huan L, Iberall, Bekey. Building a generic architecture for robot hand control. IEEE 1988 International Conference on Neural
                    Networks; 1988 Jul 24-27; San Diego, CA, USA. IEEE; 1988. p. 567-74.  DOI
               110.      Wang SD, Yeh HMS. Self-adaptive neural architectures for control applications. 1990 IJCNN International Joint Conference on
                    Neural Networks; 1990 Jun 17-21; San Diego, CA, USA. IEEE; 1990. p. 309-14.  DOI
               111.      Seidl D, Lam SL, Putman J, Lorenz R. Neural network compensation of gear backlash hysteresis in position-controlled mechanisms.
                    IEEE Trans on Ind Applicat 1995;31:1475-83.  DOI
               112.      Olsson H, Åström K, Canudas de Wit C, Gäfvert M, Lischinsky P. Friction models and friction compensation. European Journal of
                    Control 1998;4:176-95.  DOI
               113.      Katsura S, Suzuki J, Ohnishi K. Pushing operation by flexible manipulator taking environmental information into account. IEEE
                    Trans Ind Electron 2006;53:1688-97.  DOI
               114.      Katsura S, Ohnishi K. Force servoing by flexible manipulator based on resonance ratio control. IEEE Trans Ind Electron
                    2007;54:539-47.  DOI
               115.      Ghorbel F, Hung J, Spong M. Adaptive control of flexible-joint manipulators. IEEE Control Syst Mag 1989;9:9-13.  DOI
               116.      Chien M, Huang A. Adaptive control for flexible-Joint electrically driven robot with time-varying uncertainties. IEEE Trans Ind
   69   70   71   72   73   74   75   76   77   78   79