Page 76 - Read Online
P. 76
Page 70 Harib et al. Intell Robot 2022;2(1):37-71 https://dx.doi.org/10.20517/ir.2021.19
DOI PubMed
145. Liu R. Multispectral images-based background subtraction using Codebook and deep learning approaches. Available from:
https://www.theses.fr/2020UBFCA013.pdf [Last accessed on 8 Mar 2022].
146. Liu W, Wang Z, Liu X, Zeng N, Liu Y, Alsaadi FE. A survey of deep neural network architectures and their applications.
Neurocomputing 2017;234:11-26. DOI
147. Silver D, Schrittwieser J, Simonyan K, et al. Mastering the game of Go without human knowledge. Nature 2017;550:354-9. DOI
PubMed
148. Laud AD. Theory and application of reward shaping in reinforcement learning. Available from:
https://www.proquest.com/openview/bb29dc3d66eccbe7ab65560dd2c4147f/1?pq-origsite=gscholar&cbl=18750&diss=y [Last
accessed on 8 Mar 2022].
149. Kober J, Bagnell JA, Peters J. Reinforcement learning in robotics: a survey. Int J Rob Res 2013;32:1238-74. DOI PubMed
150. Digney BL. Nested Q-learning of hierarchical control structures. Proceedings of International Conference on Neural Networks
(ICNN’96); 1996 Jun 3-6; Washington, DC, USA. IEEE; 1996. p. 161-6. DOI
151. Schaal S. Learning from demonstration. Proceedings of the 9th International Conference on Neural Information Processing Systems;
1996 Dec; Cambridge, MA, USA. IEEE; 1996. p. 1040-6. DOI
152. Kuan C, Young K. Reinforcement learning and robust control for robot compliance tasks. J Intell Robot Syst 1998;23:165-82. DOI
153. Bucak IO, Zohdy MA. Application of reinforcement learning control to a nonlinear dexterous robot. Proceedings of the 38th IEEE
Conference on Decision and Control (Cat. No.99CH36304); 1999 Dec 7-10; Phoenix, AZ, USA. IEEE; 1999. p. 5108-13. DOI
154. Bucak IO, Zohdy MA. Reinforcement learning control of nonlinear multi-link system. Eng Appl Artif Intell 2001;14:563-75. DOI
155. Althoefer K, Krekelberg B, Husmeier D, Seneviratne L. Reinforcement learning in a rule-based navigator for robotic manipulators.
Neurocomputing 2001;37:51-70. DOI
156. Gaskett C. Q-learning for robot control. Available from: https://digitalcollections.anu.edu.au/bitstream/1885/47080/5/01front.pdf
[Last accessed on 8 Mar 2022].
157. Smart WD, Kaelbling LP. Reinforcement learning for robot control. Proc SPIE 2002. DOI
158. Izawa J, Kondo T, Ito K. Biological robot arm motion through reinforcement learning. Proceedings 2002 IEEE International
Conference on Robotics and Automation (Cat. No.02CH37292); 2002 May 11-15; Washington, DC, USA. IEEE; 2002. p. 3398-403.
DOI
159. Peters J, Vijayakumar S, Schaal S. Reinforcement learning for humanoid robotics. 3rd IEEE-RAS International Conference on
Humanoid Robots; 2003 Sep 29-30; Karlsruhe, Germany. 2003.
160. Bhatnagar S, Sutton RS, Ghavamzadeh M, Lee M. Natural actor-critic algorithms. Automatica 2009;45:2471-82. DOI
161. Theodorou E, Peters J, Schaal S. Reinforcement learning for optimal control of arm movements. Poster presented at 37th Annual
Meeting of the Society for Neuroscience (Neuroscience 2007); San Diego, CA, USA. 2007. DOI
162. Peters J, Schaal S. Natural actor-critic. Neurocomputing 2008;71:1180-90. DOI
163. Atkeson CG, Schaal S. Learning tasks from a single demonstration. Proceedings of International Conference on Robotics and
Automation; 1997 Apr 25-25; Albuquerque, NM, USA. IEEE; 1997. p. 1706-12. DOI
164. Hoffmann H, Theodorou E, Schaal S. Behavioral experiments on reinforcement learning in human motor control. Available from:
https://www.researchgate.net/publication/325463394 [Last accessed on 8 Mar 2022].
165. Peters J, Schaal S. Learning to control in operational space. Int J Rob Res 2008;27:197-212. DOI
166. Buchli J, Theodorou E, Stulp F, Schaal S. Variable impedance control - a reinforcement learning approach. In: Matsuoka Y, Durrant-
Whyte H, Neira J, editors. Robotics: Science and Systems VI. Cambridge: MIT Press; 2011. DOI
167. Theodorou E, Buchli J, Schaal S. Reinforcement learning of motor skills in high dimensions: a path integral approach. 2010 IEEE
International Conference on Robotics and Automation; 2010 May 3-7; Anchorage, AK, USA. IEEE; 2010. p. 2397-403. DOI
168. Kappen HJ. Path integrals and symmetry breaking for optimal control theory. J Stat Mech 2005;2005:P11011. DOI
169. Shah H, Gopal M. Reinforcement learning control of robot manipulators in uncertain environments. 2009 IEEE International
Conference on Industrial Technology; 2009 Feb 10-13; Churchill, VIC, Australia. IEEE; 2009. p. 1-6. DOI
170. Kim B, Kang B, Park S, Kang S. Learning robot stiffness for contact tasks using the natural actor-critic. 2008 IEEE International
Conference on Robotics and Automation; 2008 May 19-23; Pasadena, CA, USA. IEEE; 2008. p. 3832-7. DOI
171. Kim B, Park J, Park S, Kang S. Impedance learning for robotic contact tasks using natural actor-critic algorithm. IEEE Trans Syst
Man Cybern B Cybern 2010;40:433-43. DOI PubMed
172. Adam S, Busoniu L, Babuska R. Experience replay for real-time reinforcement learning control. IEEE Trans Syst , Man, Cybern C
2012;42:201-12. DOI
173. Hafner R, Riedmiller M. Reinforcement learning in feedback control: Challenges and benchmarks from technical process control.
Mach Learn 2011;84:137-69. DOI
174. Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. Commun ACM 2017;60:84-
90. DOI
175. Levine S, Finn C, Darrell T, Abbeel P. End-to-end training of deep visuomotor policies. Available from:
http://arxiv.org/abs/1504.00702 [Last accessed on 8 Mar 2022].
176. Levine S, Wagener N, Abbeel P. Learning contact-rich manipulation skills with guided policy search. Available from:
http://arxiv.org/abs/1501.05611 [Last accessed on 8 Mar 2022].