Page 76 - Read Online
P. 76

Page 70                              Harib et al. Intell Robot 2022;2(1):37-71  https://dx.doi.org/10.20517/ir.2021.19

                    DOI  PubMed
               145.      Liu R. Multispectral images-based background subtraction using Codebook and deep learning approaches. Available from:
                    https://www.theses.fr/2020UBFCA013.pdf [Last accessed on 8 Mar 2022].
               146.      Liu W, Wang Z, Liu X, Zeng N, Liu Y, Alsaadi FE. A survey of deep neural network architectures and their applications.
                    Neurocomputing 2017;234:11-26.  DOI
               147.      Silver D, Schrittwieser J, Simonyan K, et al. Mastering the game of Go without human knowledge. Nature 2017;550:354-9.  DOI
                    PubMed
               148.      Laud  AD.  Theory  and  application  of  reward  shaping  in  reinforcement  learning.  Available  from:
                    https://www.proquest.com/openview/bb29dc3d66eccbe7ab65560dd2c4147f/1?pq-origsite=gscholar&cbl=18750&diss=y [Last
                    accessed on 8 Mar 2022].
               149.      Kober J, Bagnell JA, Peters J. Reinforcement learning in robotics: a survey. Int J Rob Res 2013;32:1238-74.  DOI  PubMed
               150.      Digney BL. Nested Q-learning of hierarchical control structures. Proceedings of International Conference on Neural Networks
                    (ICNN’96); 1996 Jun 3-6; Washington, DC, USA. IEEE; 1996. p. 161-6.  DOI
               151.      Schaal S. Learning from demonstration. Proceedings of the 9th International Conference on Neural Information Processing Systems;
                    1996 Dec; Cambridge, MA, USA. IEEE; 1996. p. 1040-6.  DOI
               152.      Kuan C, Young K. Reinforcement learning and robust control for robot compliance tasks. J Intell Robot Syst 1998;23:165-82.  DOI
               153.      Bucak IO, Zohdy MA. Application of reinforcement learning control to a nonlinear dexterous robot. Proceedings of the 38th IEEE
                    Conference on Decision and Control (Cat. No.99CH36304); 1999 Dec 7-10; Phoenix, AZ, USA. IEEE; 1999. p. 5108-13.  DOI
               154.      Bucak IO, Zohdy MA. Reinforcement learning control of nonlinear multi-link system. Eng Appl Artif Intell 2001;14:563-75.  DOI
               155.      Althoefer K, Krekelberg B, Husmeier D, Seneviratne L. Reinforcement learning in a rule-based navigator for robotic manipulators.
                    Neurocomputing 2001;37:51-70.  DOI
               156.      Gaskett C. Q-learning for robot control. Available from: https://digitalcollections.anu.edu.au/bitstream/1885/47080/5/01front.pdf
                    [Last accessed on 8 Mar 2022].
               157.      Smart WD, Kaelbling LP. Reinforcement learning for robot control. Proc SPIE 2002.  DOI
               158.      Izawa J, Kondo T, Ito K. Biological robot arm motion through reinforcement learning. Proceedings 2002 IEEE International
                    Conference on Robotics and Automation (Cat. No.02CH37292); 2002 May 11-15; Washington, DC, USA. IEEE; 2002. p. 3398-403.
                    DOI
               159.      Peters J, Vijayakumar S, Schaal S. Reinforcement learning for humanoid robotics. 3rd IEEE-RAS International Conference on
                    Humanoid Robots; 2003 Sep 29-30; Karlsruhe, Germany. 2003.
               160.      Bhatnagar S, Sutton RS, Ghavamzadeh M, Lee M. Natural actor-critic algorithms. Automatica 2009;45:2471-82.  DOI
               161.      Theodorou E, Peters J, Schaal S. Reinforcement learning for optimal control of arm movements. Poster presented at 37th Annual
                    Meeting of the Society for Neuroscience (Neuroscience 2007); San Diego, CA, USA. 2007.  DOI
               162.      Peters J, Schaal S. Natural actor-critic. Neurocomputing 2008;71:1180-90.  DOI
               163.      Atkeson CG, Schaal S. Learning tasks from a single demonstration. Proceedings of International Conference on Robotics and
                    Automation; 1997 Apr 25-25; Albuquerque, NM, USA. IEEE; 1997. p. 1706-12.  DOI
               164.      Hoffmann H, Theodorou E, Schaal S. Behavioral experiments on reinforcement learning in human motor control. Available from:
                    https://www.researchgate.net/publication/325463394 [Last accessed on 8 Mar 2022].
               165.      Peters J, Schaal S. Learning to control in operational space. Int J Rob Res 2008;27:197-212.  DOI
               166.      Buchli J, Theodorou E, Stulp F, Schaal S. Variable impedance control - a reinforcement learning approach. In: Matsuoka Y, Durrant-
                    Whyte H, Neira J, editors. Robotics: Science and Systems VI. Cambridge: MIT Press; 2011.  DOI
               167.      Theodorou E, Buchli J, Schaal S. Reinforcement learning of motor skills in high dimensions: a path integral approach. 2010 IEEE
                    International Conference on Robotics and Automation; 2010 May 3-7; Anchorage, AK, USA. IEEE; 2010. p. 2397-403.  DOI
               168.      Kappen HJ. Path integrals and symmetry breaking for optimal control theory. J Stat Mech 2005;2005:P11011.  DOI
               169.      Shah H, Gopal M. Reinforcement learning control of robot manipulators in uncertain environments. 2009 IEEE International
                    Conference on Industrial Technology; 2009 Feb 10-13; Churchill, VIC, Australia. IEEE; 2009. p. 1-6.  DOI
               170.      Kim B, Kang B, Park S, Kang S. Learning robot stiffness for contact tasks using the natural actor-critic. 2008 IEEE International
                    Conference on Robotics and Automation; 2008 May 19-23; Pasadena, CA, USA. IEEE; 2008. p. 3832-7.  DOI
               171.      Kim B, Park J, Park S, Kang S. Impedance learning for robotic contact tasks using natural actor-critic algorithm. IEEE Trans Syst
                    Man Cybern B Cybern 2010;40:433-43.  DOI  PubMed
               172.      Adam S, Busoniu L, Babuska R. Experience replay for real-time reinforcement learning control. IEEE Trans Syst , Man, Cybern C
                    2012;42:201-12.  DOI
               173.      Hafner R, Riedmiller M. Reinforcement learning in feedback control: Challenges and benchmarks from technical process control.
                    Mach Learn 2011;84:137-69.  DOI
               174.      Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. Commun ACM 2017;60:84-
                    90.  DOI
               175.      Levine  S,  Finn  C,  Darrell  T,  Abbeel  P.  End-to-end  training  of  deep  visuomotor  policies.  Available  from:
                    http://arxiv.org/abs/1504.00702 [Last accessed on 8 Mar 2022].
               176.      Levine  S,  Wagener  N,  Abbeel  P.  Learning  contact-rich  manipulation  skills  with  guided  policy  search.  Available  from:
                    http://arxiv.org/abs/1501.05611 [Last accessed on 8 Mar 2022].
   71   72   73   74   75   76   77   78   79   80   81