Page 77 - Read Online
P. 77
Harib et al. Intell Robot 2022;2(1):37-71 https://dx.doi.org/10.20517/ir.2021.19 Page 71
177. Tai L, Zhang J, Liu M, Boedecker J, Burgard W. A survey of deep network solutions for learning control in robotics: from
reinforcement to imitation. Available from: http://arxiv.org/abs/1612.07139 [Last accessed on 8 Mar 2022].
178. Vecerik M, Hester T, Scholz J, et al. Leveraging demonstrations for deep reinforcement learning on robotics problems with sparse
rewards. Available from: http://arxiv.org/abs/1707.08817 [Last accessed on 8 Mar 2022].
179. Liu R, Nageotte F, Zanne P, de Mathelin M, Dresp-langley B. Deep reinforcement learning for the control of robotic manipulation: a
focussed mini-review. Robotics 2021;10:22. DOI
180. Andrychowicz M, Wolski F, Ray A, et al. Hindsight experience replay. Available from: https://arxiv.org/abs/1707.01495v3 [Last
accessed on 8 Mar 2022].
181. Gupta A, Savarese S, Ganguli S, Fei-Fei L. Embodied intelligence via learning and evolution. Nat Commun 2021;12:5721. DOI
PubMed PMC
182. Rajeswaran A, Kumar V, Gupta A, et al. Learning complex dexterous manipulation with deep reinforcement learning and
demonstrations. Available from: http://arxiv.org/abs/1709.10087 [Last accessed on 8 Mar 2022].
183. Matas J, James S, Davison AJ. Sim-to-real reinforcement learning for deformable object manipulation. Available from:
http://arxiv.org/abs/1806.07851 [Last accessed on 8 Mar 2022].