Page 77 - Read Online
P. 77

Harib et al. Intell Robot 2022;2(1):37-71  https://dx.doi.org/10.20517/ir.2021.19       Page 71

               177.      Tai L, Zhang J, Liu M, Boedecker J, Burgard W. A survey of deep network solutions for learning control in robotics: from
                    reinforcement to imitation. Available from: http://arxiv.org/abs/1612.07139 [Last accessed on 8 Mar 2022].
               178.      Vecerik M, Hester T, Scholz J, et al. Leveraging demonstrations for deep reinforcement learning on robotics problems with sparse
                    rewards. Available from: http://arxiv.org/abs/1707.08817 [Last accessed on 8 Mar 2022].
               179.      Liu R, Nageotte F, Zanne P, de Mathelin M, Dresp-langley B. Deep reinforcement learning for the control of robotic manipulation: a
                    focussed mini-review. Robotics 2021;10:22.  DOI
               180.      Andrychowicz M, Wolski F, Ray A, et al. Hindsight experience replay. Available from: https://arxiv.org/abs/1707.01495v3 [Last
                    accessed on 8 Mar 2022].
               181.      Gupta A, Savarese S, Ganguli S, Fei-Fei L. Embodied intelligence via learning and evolution. Nat Commun 2021;12:5721.  DOI
                    PubMed  PMC
               182.      Rajeswaran A, Kumar V, Gupta A, et al. Learning complex dexterous manipulation with deep reinforcement learning and
                    demonstrations. Available from: http://arxiv.org/abs/1709.10087 [Last accessed on 8 Mar 2022].
               183.      Matas  J,  James  S,  Davison  AJ.  Sim-to-real  reinforcement  learning  for  deformable  object  manipulation.  Available  from:
                    http://arxiv.org/abs/1806.07851 [Last accessed on 8 Mar 2022].
   72   73   74   75   76   77   78   79   80   81   82