Page 91 - Read Online
P. 91

Page 275                       Liu et al. Intell Robot 2024;4(3):256-75  I http://dx.doi.org/10.20517/ir.2024.17



               7.  Leonardi M, Stahl A, Brekke EF, Ludvigsen M. UVS: underwater visual SLAM-a robust monocular visual SLAM system for lifelong
                  underwater operations. Auton Robots 2023;47:1367-85. DOI
               8.  Al-Mouhamed MA, Khan AH, Mohammad N. A review of CUDA optimization techniques and tools for structured grid computing.
                  Computing 2020;102:977-1003. DOI
               9.  Ortiz J, Pupilli M, Leutenegger S, Davison AJ. Bundle adjustment on a graph processor. arXiv. [Preprint.] Mar 30, 2020 [accessed 2024
                  Aug 27]. Available from: https://arxiv.org/abs/2003.03134.
               10. Dally WJ, Keckler SW, Kirk DB. Evolution of the graphics processing unit (GPU). IEEE Micro 2021;41:42-51. DOI
               11. Gao H, Hu M, Liu Y. Learning driver-irrelevant features for generalizable driver behavior recognition. IEEE Trans Intell Trans Syst
                  2024:1-13. DOI
               12. Xue W, Wang H, Roy CJ. CPU-GPU heterogeneous code acceleration of a finite volume Computational Fluid Dynamics solver. Future
                  Gener Comput Syst 2024;158:367-77. DOI
               13. Wang X, Li Q, Lin Z. On the comparison of mono visual odometry front end in low texture environment. In: 2020 3rd International
                  Conference on Mechatronics, Robotics and Automation (ICMRA); 2020 Oct 16-18; Shanghai, China. IEEE; 2020. pp. 195-200. DOI
               14. Ferrer G, Iarosh D, Kornilova A. Eigen-factors an alternating optimization for back-end plane SLAM of 3D point clouds. arXiv. [Preprint.]
                  Sep 4, 2023 [accessed 2024 Aug 27]. Available from: https://arxiv.org/abs/2304.01055.
               15. Zheng S, Wang J, Rizos C, Ding W, El-Mowafy A. Simultaneous localization and mapping (SLAM) for autonomous driving: concept
                  and analysis. Remote Sens 2023;15:1156. DOI
               16. Liu K, Cao M. Dlc-slam: a robust lidar-slam system with learning-based denoising and loop closure. IEEE/ASME Trans Mechatron
                  2023;28:2876-84. DOI
               17. Mur-Artal R, Tardós JD. ORB-SLAM2: an open-source SLAM system for monocular, stereo and RGB-D cameras. IEEE Trans Robot
                  2017;33:1255-62. DOI
               18. Campos C, Elvira R, Rodríguez JJG, Montiel JMM, Tardós JD. Orb-slam3: an accurate open-source library for visual, visual-inertial, and
                  multimap SLAM. IEEE Trans Robot 2021;37:1874-90. DOI
               19. Mohammadi MS, Rezaeian M. Towards affordable computing: SiftCU a simple but elegant GPU-based implementation of SIFT. Int J
                  Comput Appl 2014;90:30-7. DOI
               20. Parker C, Daiter M, Omar K, Levi G, Hassner T. The CUDA LATCH binary descriptor: because sometimes faster means better. arXiv.
                  [Preprint.] Sep 16, 2016 [accessed 2024 Aug 27]. Available from: https://doi.org/10.48550/arXiv.1609.03986.
               21. Urban S, Hinz S. Multicol-SLAM-a modular real-time multi-camera SLAM system. arXiv. [Preprint.] Oct 24, 2016 [accessed 2024 Aug
                  27]. Available from: https://doi.org/10.48550/arXiv.1610.07336.
               22. Li J, Deng G, Zhang W, Zhang C, Wang F, Liu Y. Realization of CUDA-based real-time multi-camera visual SLAM in embedded systems.
                  J Real-Time Image Process 2020;17:713-27. DOI
               23. Ma T, Bai N, Shi W, et al.  Research on the application of visual SLAM in embedded GPU.  Wirel Commun Mob Comput
                  2021;2021:6691262. DOI
               24. Nagy B, Foehn P, Scaramuzza D. Faster than FAST: GPU-accelerated frontend for high-speed VIO. In: 2020 IEEE/RSJ International
                  Conference on Intelligent Robots and Systems (IROS); 2020 Oct 24 - 2021 Jan 24; Las Vegas, NV, USA. IEEE; 2020. pp. 4361-8. DOI
               25. Zheng M, Zhou S, Xiong X, Zhu J. GPU parallel bundle block adjustment. Cehui Xuebao/Acta Geod Cartogr Sin 2017;46:1193-201. (in
                  Chinese) DOI
               26. Lu Q, Xu J, Hu L, Shi M.  Parallel VINS-Mono algorithm based on GPUs in embedded devices.  Int J Adv Robot Syst
                  2022;19:17298814221074534. DOI
               27. Cao M, Zheng L, Jia W, Liu X. Fast incremental structure from motion based on parallel bundle adjustment. J Real-Time Image Process
                  2021;18:379-92. DOI
               28. Jiang F, Gu J, Zhu S, Li T, Zhong X. Visual odometry based 3D-reconstruction. J Phys Conf Ser 2021;1961:012074. DOI
               29. Qin T, Li P, Shen S. VINS-Mono: a robust and versatile monocular visual-inertial state estimator. IEEE Trans Robot 2018;34:1004-20.
                  DOI
               30. Sun H, Zhang Y, Zheng Y, Luo J, Pan Z. G2O-Pose: real-time monocular 3D human pose estimation based on general graph optimization.
                  Sensors 2022;22:8335. DOI
               31. Sumikura S, Shibuya M, Sakurada K. OpenVSLAM: a versatile visual SLAM framework. In: Proceedings of the 27th ACM International
                  Conference on Multimedia. New York, NY, USA: Association for Computing Machinery; 2019. pp. 2292-5. DOI
   86   87   88   89   90   91   92   93   94   95   96