Page 26 - Read Online
P. 26

He et al. Intell. Robot. 2025, 5(2), 313-32  I http://dx.doi.org/10.20517/ir.2025.16  Page 325




                                        Table 3. Comparison with other methods on FERPlus dataset
                                                 Methods    Year  Accuracy (%)
                                                 CSLD  [9]  2016    83.85
                                               ResNet+VGG  [61]  2017  87.40
                                                SHCNN  [57]  2019   86.54
                                                 RAN  [45]  2020    88.55
                                                RAN-VGG  [45]  2021  89.16
                                                  SCN  [48]  2020    88.01
                                                 VTFF  [54]  2021    88.81
                                                 PACVT  [41]  2023  88.72
                                                GSDNet  [32]  2024  90.32
                                               CBAM-4CNN  [62]  2024  87.75
                                               MSAFNet(ours)  2025  89.82


                                               The bold format is used to indi-cate
                                                the best (highest) accuracy. CSLD:
                                                Crowd-sourced label dis-tribution;
                                                VGG: visual geometry group networks;
                                                SHCNN: shal-low convolutional neural
                                                network; RAN: region attention
                                                networks; SCN: self-cure networks;
                                                VTFF: visual transformers with feature
                                                fusion;  PACVT: patch attention
                                                convolutional vision transformer;
                                                GSDNet: gradual self distillation
                                                network;  CBAM-4CNN: convo-
                                                lutional block attention module with
                                                convolutional neural network; MSAFNet:
                                                multi-scale attention and convolution-
                                                transformer fu-sion network.




































                                      Figure 7. The confusion matrices of MSAFNet on the FERPlus dataset.
   21   22   23   24   25   26   27   28   29   30   31