Page 85 - Read Online
P. 85
Page 124 Yang et al. Intell Robot 2024;4(1):107-24 I http://dx.doi.org/10.20517/ir.2024.07
REFERENCES
1. Luz C, Bush T, Shen X. Do canes or walkers make any difference? Nonuse and fall injuries. Gerontologist 2015;57:211-8. DOI
2. Bertrand K, Raymond MH, Miller WC, Martin Ginis KA, Demers L. Walking aids for enabling activity and participation: a systematic
review. Am J Phys Med Rehabil 2017;96:894-903. DOI
3. Di P, Hasegawa Y, Nakagawa S, et al. Fall detection and prevention control using walking-aid cane robot. IEEE/ASME Trans Mechatron
2016;21:625-37. DOI
4. Xu W, Huang J, Cheng L. A novel coordinated motion fusion-based walking-aid robot system. Sensors 2018;18:2761 DOI
5. Moustris GP, Tzafestas CS. Intention-based front-following control for an intelligent robotic rollator in indoor environments. In: 2016
IEEE Symposium Series on Computational Intelligence (SSCI); 2016 Dec 6-9; Athens, Greece. IEEE; 2016. pp. 1-7. DOI
6. Tefertiller C, Hays K, Jones J, et al. Initial outcomes from a multicenter study utilizing the indego powered exoskeleton in spinal cord
injury. Top Spinal Cord Inj Rehabil 2018;24:78-85. DOI
7. Read E, Woolsey C, McGibbon CA, O’Connell C. Physiotherapists’ experiences using the Ekso bionic exoskeleton with patients in a
neurological rehabilitation hospital: a qualitative study. Rehabil Res Pract 2020;2020:2939573. DOI
8. Esquenazi A, Talaty M, Packel A, Saulino M. The ReWalk powered exoskeleton to restore ambulatory function to individuals with
thoracic-level motor-complete spinal cord injury. Am J Phys Med Rehabil 2012;91:911-21. DOI
9. Koljonen PA, Virk AS, Jeong Y, et al. Outcomes of a multicenter safety and efficacy study of the SuitX phoenix powered exoskeleton for
ambulation by patients with spinal cord injury. Front Neurol 2021;12:689751. DOI
10. Sun Y, Lei Y, Zou W, Li J, Yu N. Real-time force control of an SEA-based body weight support unit with the 2-DOF control structure. In:
2018 IEEE International Conference on Real-time Computing and Robotics (RCAR); 2018 Aug 1-5; Kandima, Maldives. IEEE; 2018. pp.
390-94. DOI
11. Wei C, Qin T, Meng X, Qiu J, Wang Y, Li B. Surplus force control strategy of an active body-weight support training system. In: Liu XJ,
Nie Z, Yu J, Xie F, Song R, editors. Intelligent Robotics and Applications. ICIRA 2021. Lecture Notes in Computer Science, vol 13014.
Cham: Springer; 2021. pp. 153-62. DOI
12. Mun KR, Guo Z, Yu H. Development and evaluation of a novel overground robotic walker for pelvic motion support. In: 2015 IEEE
International Conference on Rehabilitation Robotics (ICORR); 2015 Aug 11-14; Singapore. IEEE; 2015. pp. 95-100. DOI
13. Song Z, Chen W, Wang W, Zhang G. Dynamic modeling and simulation of a body weight support system. J Healthc Eng
2020;2020:2802574. DOI
14. Chugo D, Morita Y, Yokota S, Sakaida Y, Takase K. A robotic walker for standing assistance with realtime estimation of a patient’s load.
In: 2012 12th IEEE international workshop on advanced motion control (AMC); 2012 Mar 25-27; Sarajevo, Bosnia and Herzegovina.
IEEE; 2012. pp. 1-6. DOI
15. Ding Y, Kim M, Kuindersma S, Walsh CJ. Human-in-the-loop optimization of hip assistance with a soft exosuit during walking. Sci Robot
2018;3:eaar5438. DOI
16. Song S, Collins SH. Optimizing exoskeleton assistance for faster self-selected walking. IEEE Trans Neural Syst Rehabil Eng 2021;29:786-
95. DOI
17. Lee H, Rosen J. Lower limb exoskeleton - energy optimization of bipedal walking with energy recycling - modeling and simulation. IEEE
Robot Autom Lett 2023;8:1579-86. DOI
18. Stanković MS, Stipanović DM. Extremum seeking under stochastic noise and applications to mobile sensors. Automatica 2010;46:1243-
51. DOI
19. Xi R, Zhu Z, Du F, Yang M, Wang X, Wu Q. Design concept of the quasi-passive energy-efficient power-assisted lower-limb exoskeleton
based on the theory of passive dynamic walking. In: 2016 23rd International Conference on Mechatronics and Machine Vision in Practice
(M2VIP); 2016 Nov 28-30; 2016. Nanjing, China. IEEE; 2016. pp. 1-5. DOI
20. Kumar S, Mohammadi A, Quintero D, Rezazadeh S, Gans N, Gregg RD. Extremum seeking control for model-free auto-tuning of powered
prosthetic legs. IEEE Trans Control Syst Technol 2019;28:2120-35. DOI
21. Krstic M, Wang HH. Stability of extremum seeking feedback for general nonlinear dynamic systems. Automatica 2000;36:595-602. DOI
22. Ariyur KB, Krstic M. Real-time optimization by extremum-seeking control. John Wiley & Sons; 2003. DOI
23. Kumar S, Mohammadi A, Gans N, Gregg RD. Automatic tuning of virtual constraint-based control algorithms for powered knee-ankle
prostheses. In: 2017 IEEE Conference on Control Technology and Applications (CCTA); 2017 Aug 27-30; Maui, HI, USA. IEEE; 2017.
pp. 812-18. DOI
24. Kumar S, Zwall MR, Bolívar-Nieto EA, Gregg RD, Gans N. Extremum seeking control for stiffness auto-tuning of a quasi-passive ankle
exoskeleton. IEEE Robot Autom Lett 2020;5:4604-11. DOI
25. Morar A. Stepper motor model for dynamic simulation. Act Electr 2003;44:117-22. Available from: https://ie.utcluj.ro/files/acta/2003/N
umber%202/Paper08_Morar.pdf. [Last accessed on 6 March 2024]
26. Choi JY, Krstic M, Ariyur KB, Lee JS. Extremum seeking control for discrete-time systems. IEEE Trans Autom Control 2002;47:318-23.
DOI
27. Clauser CE, Mc Conville JT, Young JW. Weight, volume, and center of mass of segments of the human body. 1969. Available from:
https://ntrs.nasa.gov/api/citations/19700027497/downloads/19700027497.pdf. [Last accessed on 6 March 2024]