Page 66 - Read Online
P. 66

Page 144                          Tong et al. Intell Robot 2024;4:125-45  I http://dx.doi.org/10.20517/ir.2024.08


               10. Maciejasz P, Eschweiler J, Gerlach-Hahn K, Jansen-Troy A, Leonhardt S. A survey on robotic devices for upper limb rehabilitation. J
                  Neuroeng Rehabil 2014;11:3. DOI
               11. Klamroth-Marganska V, Blanco J, Campen K, et al. Three-dimensional, task-specific robot therapy of the arm after stroke: a multicentre,
                  parallel-group randomised trial. Lancet Neurol 2014;13:159-66. DOI
               12. Nef T, Mihelj M, Colombo G, Riener R. ARMin - robot for rehabilitation of the upper extremities. In: Proceedings 2006 IEEE International
                  Conference on Robotics and Automation; 2006 May 15-19; Orlando, USA. IEEE; 2006. pp. 3152-7. DOI
               13. Kim B, Deshpande AD. An upper-body rehabilitation exoskeleton Harmony with an anatomical shoulder mechanism: design, modeling,
                  control, and performance evaluation. Int J Robot Res 2017;36:414-35. DOI
               14. Islam MR, Assad-Uz-Zaman M, Brahmi B, Bouteraa Y, Wang I, Rahman MH. Design and development of an upper limb rehabilitative
                  robot with dual functionality. Micromachines 2021;12:870. DOI
               15. Huang J, Tu X, He J. Design and evaluation of the RUPERT wearable upper extremity exoskeleton robot for clinical and in-home therapies.
                  IEEE T Syst Man Cybern Syst 2016;46:926-35. DOI
               16. Lee HD, Lee BK, Kim WS, Han JS, Shin KS, Han CS. Human-robot cooperation control based on a dynamic model of an upper limb
                  exoskeleton for human power amplification. Mechatronics 2014;24:168-76. DOI
               17. Ball SJ, Brown IE, Scott SH. MEDARM: a rehabilitation robot with 5DOF at the shoulder complex. In: 2007 IEEE/ASME International
                  Conference on Advanced Intelligent Mechatronics; 2007 Sep 04-07; Zurich, Switzerland. IEEE; 2007. p. 1-6. DOI
               18. Brahmi B, Saad M, Luna CO, Archambault PS, Rahman MH. Passive and active rehabilitation control of human upper-limb exoskeleton
                  robot with dynamic uncertainties. Robotica 2018;36:1757-79. DOI
               19. Ott C, Albu-Schaffer A, Kugi A, Stamigioli S, Hirzinger G. A passivity based cartesian impedance controller for flexible joint robots -
                  part I: torque feedback and gravity compensation. In: IEEE International Conference on Robotics and Automation; 2004 Apr 26 - May
                  01; New Orleans. IEEE; 2004. pp. 2659-65. DOI
               20. Kim WS, Lee HD, Lim DH, Han JS, Shin KS, Han CS. Development of a muscle circumference sensor to estimate torque of the human
                  elbow joint. Sensor Actuat A Phys 2014;208:95-103. DOI
               21. Radke A, Gao Z. A survey of state and disturbance observers for practitioners. In: 2006 American Control Conference; 2006 Jun 14-16;
                  Minneapolis, USA. IEEE; 2006. DOI
               22. Rosen J, Brand M, Fuchs MB, Arcan M. A myosignal-based powered exoskeleton system. IEEE Trans Syst Man Cybern A 2001;31:210-2.
                  DOI
               23. Ison M, Artemiadis P. The role of muscle synergies in myoelectric control: trends and challenges for simultaneous multifunction control.
                  J Neural Eng 2014;11:051001. DOI
               24. Hashemi J, Morin E, Mousavi P, Mountjoy K, Hashtrudi-Zaad K. EMG-force modeling using parallel cascade identification. J Elec-
                  tromyogr Kines 2012;22:469-77. DOI
               25. Khan AM, Yun D, Zuhaib KM, et al. Estimation of desired motion intention and compliance control for upper limb assist exoskeleton.
                  Int J Control Autom Syst 2017;15:802-14. DOI
               26. Yin W, Sun L, Wang M, Liu J. Nonlinear state feedback position control for flexible joint robot with energy shaping. Robot Auton Syst
                  2018;99:121-34. DOI
               27. Hu J, Xiong R. Contact force estimation for robot manipulator using semiparametric model and disturbance Kalman filter. IEEE T Ind
                  Electron 2018;65:3365-75. DOI
               28. Martinez S, Garcia-Haro JM, Victores JG, Jardon A, Balaguer C. Experimental robot model adjustments based on force-torque sensor
                  information. Sensors 2018;18:836. DOI
               29. Davari SA, Rodriguez J. Predictive direct voltage control of induction motor with mechanical model consideration for sensorless applica-
                  tions. IEEE J Em Sel Top P 2018;6:1990-2000. DOI
               30. Chen S, Luo M, Jiang G, Abdelaziz O. Collaborative robot zero moment control for direct teaching based on self-measured gravity and
                  friction. Int J Adv Robot Syst 2018;15:1729881418808711. DOI
               31. Jin X, Chen K, Zhao Y, Ji J, Jing P. Simulation of hydraulic transplanting robot control system based on fuzzy PID controller. Measurement
                  2020;164:108023. DOI
               32. Huang Y, Yasunobu S. A general practical design method for fuzzy PID control from conventional PID control. In: Ninth IEEE Interna-
                  tional Conference on Fuzzy Systems; 2000 May 07-10; San Antonio, USA. IEEE; 2000. pp. 969-72. DOI
               33. Aprile I, Cruciani A, Germanotta M, et al. Upper limb robotics in rehabilitation: an approach to select the devices, based on rehabilitation
                  aims, and their evaluation in a feasibility study. Appl Sci 2019;9:3920. DOI
               34. Merat F. Introduction to robotics: mechanics and control. IEEE J Robot Autom 1987;3:166. DOI
               35. Qin Z, Baron L, Birglen L. A new approach to the dynamic parameter identification of robotic manipulators. Robotica 2010;28:539-47.
                  DOI
               36. Atkeson CG, An CH, Hollerbach JM. Estimation of inertial parameters of manipulator loads and links. Int J Robot Res 1986;5:101-19.
                  DOI
               37. Swevers J, Verdonck W, De Schutter J. Dynamic model identification for industrial robots. IEEE Contr Syst Mag 2007;27:58-71. DOI
               38. Jarrasse N, Proietti T, Crocher V, et al. Robotic exoskeletons: a perspective for the rehabilitation of arm coordination in stroke patients.
                  Front Hum Neurosci 2014;8:947. DOI
               39. Aguirre-Ollinger G, Colgate JE, Peshkin MA, Goswami A. Inertia compensation control of a one-degree-of-freedom exoskeleton for
                  lower-limb assistance: initial experiments. IEEE Trans Neural Syst Rehab Eng 2012;20:68-77. DOI
               40. Juang CF, Lai MG, Zeng WT. Evolutionary fuzzy control and navigation for two wheeled robots cooperatively carrying an object in
   61   62   63   64   65   66   67   68   69   70   71