Page 46 - Read Online
P. 46

Sun et al. Intell Robot 2023;3(3):257-73  I http://dx.doi.org/10.20517/ir.2023.17   Page 273

                                             
                ¤                         2        
                     2  (  ) = −2        2 (  ) + (      −       ) ¤ (  )   2 ¤(  )
                               ∫
                                    −     
                                            ¤    (  )   2 ¤(  )    
                     − (      −       )     2  (  −  )                                                 (22)
                                  −     
               In view of Lemma 1 and Lemma 2, the following relation holds
                    ∫    
                               ¤    (  )   1 ¤(  )     ≤
                −           2  (  −  )       
                       −     
                       [          ]    [        ] [         ]
                             (  )         1  −   1     (  )
                −    −2                                                                                (23)
                           (   −       )  −   1     1    (   −       )
               and
                          ∫
                              −     
                                      ¤    (  )   2 ¤(  )     ≤
                − (      −       )     2  (  −  )       
                             −     
                                                −  
                                2      −    2       
                                                    
                −    −2              ∗  2   2 −    −            (  )                                 (24)
                          (  )
                                                 −    2 
                              ∗       ∗             
                                                   2  
                                                         ]
                        
               where    =  [    (   −       )    (   −   (  ))    (   −       ) .
                                                                       
               By summing up (18) ∼ (24) and applying    (      ℎ)Φ  (      ℎ) ≤      X(      ), the following relation is achieved
                                  
                 (  ) + 2    (  ) −      (  )  (  ) <
                ¤
                              2               2   
                                     
                                 
                                                 
                  (  )Π 11   (  ) +    ¤    1 ¤ + (      −       ) ¤    2 ¤                            (25)
                                
               where   (  ) =       {  (  ),   (   −       ),   (   −   (  )),   (   −       ),   (  )} and Π 11 is given in (13).
               Using Schur complement for (25), (13) hold when Π < 0 for all   .
                                                         2
               Let    =           (  ),    =           (  ) +    2           (      ) +  2           (      ) and ||  || = max(||  (  )||) for    = 1, 2, it gives
                                                      2
                                                     √               √
                                                                       1
                                             ||  (  )|| ≤     −      ||  (0)|| +     ||  ||            (26)
                                                                         
               from (25).


               Obviously, (26) shows that the NCS (9) is ISS under the SS-ETC scheme (5).
   41   42   43   44   45   46   47   48   49   50   51