Page 46 - Read Online
P. 46
Sun et al. Intell Robot 2023;3(3):257-73 I http://dx.doi.org/10.20517/ir.2023.17 Page 273
¤ 2
2 ( ) = −2 2 ( ) + ( − ) ¤ ( ) 2 ¤( )
∫
−
¤ ( ) 2 ¤( )
− ( − ) 2 ( − ) (22)
−
In view of Lemma 1 and Lemma 2, the following relation holds
∫
¤ ( ) 1 ¤( ) ≤
− 2 ( − )
−
[ ] [ ] [ ]
( ) 1 − 1 ( )
− −2 (23)
( − ) − 1 1 ( − )
and
∫
−
¤ ( ) 2 ¤( ) ≤
− ( − ) 2 ( − )
−
−
2 − 2
− −2 ∗ 2 2 − − ( ) (24)
( )
− 2
∗ ∗
2
]
where = [ ( − ) ( − ( )) ( − ) .
By summing up (18) ∼ (24) and applying ( ℎ)Φ ( ℎ) ≤ X( ), the following relation is achieved
( ) + 2 ( ) − ( ) ( ) <
¤
2 2
( )Π 11 ( ) + ¤ 1 ¤ + ( − ) ¤ 2 ¤ (25)
where ( ) = { ( ), ( − ), ( − ( )), ( − ), ( )} and Π 11 is given in (13).
Using Schur complement for (25), (13) hold when Π < 0 for all .
2
Let = ( ), = ( ) + 2 ( ) + 2 ( ) and || || = max(|| ( )||) for = 1, 2, it gives
2
√ √
1
|| ( )|| ≤ − || (0)|| + || || (26)
from (25).
Obviously, (26) shows that the NCS (9) is ISS under the SS-ETC scheme (5).