Page 48 - Read Online
P. 48

Wu. Intell Robot 2021;1(2):99-115  I http://dx.doi.org/10.20517/ir.2021.11        Page 113



               DECLARATIONS

               Authors’ contributions
               The author contributed solely to the article.


               Availability of data and materials
               Not applicable.

               Financial support and sponsorship
               This work was supported by Natural Science Foundation of Liaoning Province (Grant No. 20180520028).

               Conflicts of interest
               The author declared that there are no conflicts of interest.

               Ethical approval and consent to participate
               Not applicable.

               Consent for publication
               Not applicable.


               Copyright
               © The Author(s) 2021.


               REFERENCES


               1.  Ivlev O, Martens C, Graeser A. Rehabilitation Robots FRIEND­I and FRIEND­II with the dexterous lightweight manipulator. Technology
                  and Disability 2005;17:111–23.
               2.  Bien Z, Chung MJ, Chang PH, Kwon DS. Integration of a Rehabilitation Robotic System (KARES II) with Human­Friendly Man­Machine
                  Interaction Units. Auton Robot 2004;16:165–91.
               3.  Mahoney RM. The Raptor wheelchair robot system. In: Mokhtari M, editor. Integration of Assistive Technology in the Information Age.
                  IOS press; 2001. pp. 135–41.
               4.  Universal Robots. Available from https://www.universal­robots.com/GB/Cases.aspx.
               5.  Wu G, Shen H. In: Introduction. Singapore: Springer Singapore; 2021. pp. 1–15.
               6.  Hoevenaars AG, Krut S, Herder JL.  Jacobian­based natural frequency analysis of parallel manipulators.  Mech Mach Theory
                  2020;148:103775.
               7.  Briot S, Pashkevich A, Chablat D. On the optimal design of parallel robots taking into account their deformation and natural frequencies.
                  In: ASME IDETC & CIE Conf.. vol. DETC2009­86230. San Diego, California, USA; 2009. pp. 367–76.
               8.  Siciliano B, Khatib O. Springer Handbook of Robotics. Springer; 2016.
               9.  Cammarata A, Condorelli D, Sinatra R. An algorithm to study the elastodynamics of parallel kinematic machines with lower kinematic
                  pairs. ASME J Mech Robot 2013;5:011004.
               10. Dwivedy SK, Eberhard P. Dynamic analysis of flexible manipulators, a literature review. Mech Mach Theory 2006;41:749–77.
               11. Briot S, Khalil W. Dynamics of Parallel Robots. vol. 35 of Mechanisms and Machine Science. Ceccarelli M, editor. Springer International
                  Publishing AG Switzerland; 2015.
               12. Khalil W, Gautier M. Modeling of mechanical systems with lumped elasticity. In: Proceedings 2000 ICRA. Millennium Conference.
                  IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No. 00CH37065). vol. 4. San Francisco, CA,
                  USA: IEEE; 2000. pp. 3964–69.
               13. Wittbrodt E, Adamiec­Wójcik I, Wojciech S. Dynamics of Flexible Multibody Systems: Rigid Finite Element Method. Foundations of
                  Engineering Mechanics. Springer Science & Business Media; 2007.
               14. Briot S, Khalil W. Recursive and symbolic calculation of the elastodynamic model of flexible parallel robots. Int J Robot Res 2014;33:469–
                  83.
               15. Taghvaeipour A, Angeles J, Lessard L. Elastodynamics of a two­limb Schönflies motion generator. Proc Ins Mech Eng Part C J Mech
                  Eng Sci 2015;229:751–64.
               16. Boyer F, Coiffet P. Symbolic modeling of a flexible manipulator via assembling of its generalized Newton–Euler model. Mech Mach
                  Theory 1996;31:45–56.
               17. Rognant M, Courteille E, Maurine P. A systematic procedure for the elastodynamic modeling and identification of robot manipulators.
                  IEEE Trans Robot 2010;26:1085–93.
               18. Bauchau OA. Flexible Multibody Dynamics. vol. 176 of Solid Mechanics and Its Applications. Springer Science & Business Media;
   43   44   45   46   47   48   49   50   51   52   53