Page 49 - Read Online
P. 49

Page 114                              Wu. Intell Robot 2021;1(2):99-115  I http://dx.doi.org/10.20517/ir.2021.11



                  2010.
               19. de Jalon JG, Bayo E. Kinematic and Dynamic Simulation of Multibody Systems: the Real­time Challenge. Springer Science & Business
                  Media; 2012.
               20. Wu G, Shen H. Parallel PnP Robots. vol. 7 of Research on Intelligent Manufacturing. Ding H, Sun R, editors. Springer, Singapore; 2021.
               21. Ku DM, Chen LW. Kineto­elastodynamic vibration analysis of robot manipulators by the finite element method. Comput Struct
                  1990;37:309–17.
               22. Salisbury JK. Active stiffness control of a manipulator in cartesian coordinates. In: 1980 19th IEEE Conference on Decision and Control
                  including the Symposium on Adaptive Processes. Albuquerque, NM, USA; 1980. pp. 95–100.
               23. Gosselin C. Stiffness mapping for parallel manipulators. IEEE Trans Robot Autom 1990;6:377–82.
               24. Wittbrodt E, Adamiec­Wójcik I, Wojciech S. Dynamics of Flexible Multibody Systems. Springer; 2006.
               25. Quennouelle C, Gosselin C. Kinematostatic modeling of compliant parallel mechanisms. Meccanica 2011;46:155–69.
               26. El­Khasawneh BS, Ferreira PM. Computation of stiffness and stiffness bounds for parallel link manipulators. Int J Mach Tool Manuf
                  1999;39:321–42.
               27. Gosselin CM, Zhang D. Stiffness analysis of parallel mechanisms using a lumped model. Int J Robot Autom 2002;17:17–27.
               28. Dai J, Ding X. Compliance analysis of a three­legged rigidly­connected platform device. ASME J Mech Des 2006;128:755–64.
               29. Majou F, Gosselin C, Wenger P, Chablat D. Parametric stiffness analysis of the Orthoglide. Mech Mach Theory 2007;42:296–311.
               30. Pashkevich A, Chablat D, Wenger P. Stiffness analysis of overconstrained parallel manipulators. Mech Mach Theory 2009;44:966–82.
               31. Kövecses J, Angeles J. The stiffness matrix in elastically articulated rigid­body systems. Multi Syst Dyn 2007;18:169–84.
               32. Quennouelle C, Gosselin CM. Stiffness Matrix of Compliant Parallel Mechanisms. In: Lenarčič J, Wenger P, editors. Advances in Robot
                  Kinematics: Analysis and Design. Springer Netherlands; 2008. pp. 331–41.
               33. Tyapin I, Hovland G. Kinematic and elastostatic design optimisation of the 3­DOF Gantry­Tau parallel kinematic manipulator. Modeling,
                  Identification and Control 2009;30:39–56. DOI
               34. Cammarata A, Caliò I, D’Urso D, et al. Dynamic stiffness model of spherical parallel robots. J Sound Vib 2016;384:312–24.
               35. Wu L, Wang G, Liu H, Huang T. An approach for elastodynamic modeling of hybrid robots based on substructure synthesis technique.
                  Mech Mach Theory 2018;123:124–36.
               36. Wu J, Li T, Wang J, Wang L. Stiffness and natural frequency of a 3­DOF parallel manipulator with consideration of additional leg
                  candidates. Robot Auton Syst 2013;61:868–75.
               37. Lara­Molina FA, Koroishi EH, Costa TL. Elastodynamic Performance of a Planar Parallel Mechanism Under Uncertainties. In: Interna­
                  tional Symposiu on Multibody Systems and Mechatronics. Springer; 2017. pp. 183–92.
               38. Wu G, Zhao W, Zhang X. Optimum time­energy­jerk trajectory planning for serial robotic manipulators by reparameterized quintic
                  NURBS curves. Proc Ins Mech Eng Part C J Mech Eng Sci 2021;235:4382-93. DOI
               39. Denavit J, Hartenberg RS. A kinematic notation for lower­pair mechanisms based on matrices. ASME J Appl Mech 1955;22:215–21.
               40. Tsai LW. Robot Analysis: The Mechanics of Serial and Parallel Manipulators. John Wiley & Sons; 1999.
               41. Ranjbaran F, Angeles J, González­Palacios MA, Patel RV. The mechanical design of a seven­axes manipulator with kinematic isotropy. J
                  Intell Robot Syst 1995;14:21–41.
               42. Pashkevich A, Klimchik A, Chablat D. Enhanced stiffness modeling of manipulators with passive joints. Mech Mach Theory 2011;46:662–
                  79.
               43. Wu G, Bai S, Kepler J. Mobile platform center shift in spherical parallel manipulators with flexible limbs. Mech Mach Theory 2014;75:12–
                  26.
               44. Rao SS. Mechanical Vibrations. 4th ed. Prentice Hall; 2003.
               45. Dong C, Liu H, Huang T, Chetwynd DG. A screw theory­based semi­analytical approach for elastodynamics of the Tricept robot. ASME
                  J Mech Robot 2019;11:031005.
               46. Alessandro C, Rosario S. Elastodynamic optimization of a 3T1R parallel manipulator. Mech Mach Theory 2014;73:184–96.
   44   45   46   47   48   49   50   51   52   53   54