Page 947 - Read Online
P. 947

Page 16 of 18                     Caron de Fromentel et al. Hepatoma Res 2020;6:80  I  http://dx.doi.org/10.20517/2394-5079.2020.77

               100. Petrenko O, Zaika A, Moll UM. deltaNp73 facilitates cell immortalization and cooperates with oncogenic Ras in cellular transformation
                   in vivo. Mol Cell Biol 2003;23:5540-55.
               101. Beitzinger M, Hofmann L, Oswald C, et al. p73 poses a barrier to malignant transformation by limiting anchorage-independent growth.
                   EMBO J 2008;27:792-803.
               102. Tannapfel A, John K, Mise N, et al. Autonomous growth and hepatocarcinogenesis in transgenic mice expressing the p53 family inhibitor
                   DNp73. Carcinogenesis 2008;29:211-8.
               103. Botti E, Spallone G, Moretti F, et al. Developmental factor IRF6 exhibits tumor suppressor activity in squamous cell carcinomas. Proc
                   Natl Acad Sci U S A 2011;108:13710-5.
               104. Marinari B, Moretti F, Botti E, et al. The tumor suppressor activity of IKKalpha in stratified epithelia is exerted in part via the TGF-beta
                   antiproliferative pathway. Proc Natl Acad Sci U S A 2008;105:17091-6.
               105. Ramsey MR, Wilson C, Ory B, et al. FGFR2 signaling underlies p63 oncogenic function in squamous cell carcinoma. J Clin Invest
                   2013;123:3525-38.
               106. Koster MI, Kim S, Mills AA, DeMayo FJ, Roop DR. p63 is the molecular switch for initiation of an epithelial stratification program.
                   Genes Dev 2004;18:126-31.
               107. De Laurenzi V, Raschellá G, Barcaroli D, et al. Induction of neuronal differentiation by p73 in a neuroblastoma cell line. J Biol Chem
                   2000;275:15226-31.
               108. Yang A, Walker N, Bronson R, et al. p73-deficient mice have neurological, pheromonal and inflammatory defects but lack spontaneous
                   tumours. Nature 2000;404:99-103.
               109. Yang A, Schweitzer R, Sun D, et al. p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development. Nature
                   1999;398:714-8.
               110.  Donehower LA, Harvey M, Slagle BL, et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours.
                   Nature 1992;356:215-21.
               111.  Jacks T, Remington L, Williams BO, et al. Tumor spectrum analysis in p53-mutant mice. Current Biology 1994;4:1-7.
               112.  Flores ER, Sengupta S, Miller JB, et al. Tumor predisposition in mice mutant for p63 and p73: evidence for broader tumor suppressor
                   functions for the p53 family. Cancer Cell 2005;7:363-73.
               113.  Guo X, Keyes WM, Papazoglu C, et al. TAp63 induces senescence and suppresses tumorigenesis in vivo. Nat Cell Biol 2009;11:1451-7.
               114.  Tomasini R, Tsuchihara K, Wilhelm M, et al. TAp73 knockout shows genomic instability with infertility and tumor suppressor functions.
                   Genes Dev 2008;22:2677-91.
               115.  Lin T, Chao C, Saito S, et al. p53 induces differentiation of mouse embryonic stem cells by suppressing Nanog expression. Nat Cell Biol
                   2005;7:165-71.
               116.  Meletis K, Wirta V, Hede SM, et al. p53 suppresses the self-renewal of adult neural stem cells. Development 2006;133:363-9.
               117.  Liu Y, Elf SE, Miyata Y, et al. p53 regulates hematopoietic stem cell quiescence. Cell Stem Cell 2009;4:37-48.
               118.  Kim J, Lengner CJ, Kirak O, et al. Reprogramming of postnatal neurons into induced pluripotent stem cells by defined factors. Stem Cells
                   2011;29:992-1000.
               119.  Yi L, Lu C, Hu W, Sun Y, Levine AJ. Multiple roles of p53-related pathways in somatic cell reprogramming and stem cell differentiation.
                   Cancer Res 2012;72:5635-45.
               120. Tovy A, Spiro A, McCarthy R, et al. p53 is essential for DNA methylation homeostasis in naïve embryonic stem cells, and its loss
                   promotes clonal heterogeneity. Genes Dev 2017;31:959-72.
               121. Lane DP. Cancer. p53, guardian of the genome. Nature 1992;358:15-6.
               122. Menendez S, Camus S, Izpisua Belmonte JC. p53: guardian of reprogramming. Cell Cycle 2010;9:3887-91.
               123. Sarig R, Rivlin N, Brosh R, et al. Mutant p53 facilitates somatic cell reprogramming and augments the malignant potential of
                   reprogrammed cells. J Exp Med 2010;207:2127-40.
               124. Mizuno H, Spike BT, Wahl GM, Levine AJ. Inactivation of p53 in breast cancers correlates with stem cell transcriptional signatures. Proc
                   Natl Acad Sci U S A 2010;107:22745-50.
               125. Lee TI, Jenner RG, Boyer LA, et al. Control of developmental regulators by Polycomb in human embryonic stem cells. Cell
                   2006;125:301-13.
               126. Boyer LA, Plath K, Zeitlinger J, et al. Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature
                   2006;441:349-53.
               127. Di Fiore R, Marcatti M, Drago-Ferrante R, et al. Mutant p53 gain of function can be at the root of dedifferentiation of human
                   osteosarcoma MG63 cells into 3AB-OS cancer stem cells. Bone 2014;60:198-212.
               128. Arsic N, Gadea G, Lagerqvist EL, et al. The p53 isoform Δ133p53β promotes cancer stem cell potential. Stem Cell Reports 2015;4:531-
                   40.
               129. Senoo M, Pinto F, Crum CP, McKeon F. p63 is essential for the proliferative potential of stem cells in stratified epithelia. Cell
                   2007;129:523-36.
               130. Chakrabarti R, Wei Y, Hwang J, et al. ΔNp63 promotes stem cell activity in mammary gland development and basal-like breast cancer by
                   enhancing Fzd7 expression and Wnt signalling. Nat Cell Biol 2014;16:1004-15, 1-13.
               131. Memmi EM, Sanarico AG, Giacobbe A, et al. p63 Sustains self-renewal of mammary cancer stem cells through regulation of Sonic
                   Hedgehog signaling. Proc Natl Acad Sci U S A 2015;112:3499-504.
               132. Liu S, Dontu G, Mantle ID, et al. Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem
                   cells. Cancer Res 2006;66:6063-71.
   942   943   944   945   946   947   948   949   950   951   952