Page 949 - Read Online
P. 949

Page 18 of 18                     Caron de Fromentel et al. Hepatoma Res 2020;6:80  I  http://dx.doi.org/10.20517/2394-5079.2020.77

               168. Liang C, Zhang K, Ge H, et al. Prognostic and clinicopathological value of Nanog in hepatocellular carcinoma: a meta-analysis. Clin
                   Chim Acta 2018;477:24-31.
               169. Chen CL, Uthaya Kumar DB, Punj V, et al. NANOG metabolically reprograms tumor-initiating stem-like cells through tumorigenic
                   changes in oxidative phosphorylation and fatty acid metabolism. Cell Metab 2016;23:206-19.
               170. Shan J, Shen J, Liu L, et al. Nanog regulates self-renewal of cancer stem cells through the insulin-like growth factor pathway in human
                   hepatocellular carcinoma. Hepatology 2012;56:1004-14.
               171. Choi YJ, Lin CP, Ho JJ, et al. miR-34 miRNAs provide a barrier for somatic cell reprogramming. Nat Cell Biol 2011;13:1353-60.
               172. He L, He X, Lim LP, et al. A microRNA component of the p53 tumour suppressor network. Nature 2007;447:1130-4.
               173. Marchenko ND, Zaika A, Moll UM. Death signal-induced localization of p53 protein to mitochondria. A potential role in apoptotic
                   signaling. J Biol Chem 2000;275:16202-12.
               174. Blandino G, Valenti F, Sacconi A, Di Agostino S. Wild type- and mutant p53 proteins in mitochondrial dysfunction: emerging insights in
                   cancer disease. Semin Cell Dev Biol 2020;98:105-17.
               175. Comel A, Sorrentino G, Capaci V, Del Sal G. The cytoplasmic side of p53’s oncosuppressive activities. FEBS Lett 2014;588:2600-9.
               176. Liu K, Lee J, Kim JY, et al. Mitophagy controls the activities of tumor suppressor p53 to regulate hepatic cancer stem cells. Mol Cell
                   2017;68:281-92.e5.
               177. Liu K, Lee J, Ou JJ. Autophagy and mitophagy in hepatocarcinogenesis. Mol Cell Oncol 2018;5:e1405142.
               178. Ungewitter E, Scrable H. Delta40p53 controls the switch from pluripotency to differentiation by regulating IGF signaling in ESCs. Genes
                   Dev 2010;24:2408-19.
               179. Voeltzel T, Flores-Violante M, Zylbersztejn F, et al. A new signaling cascade linking BMP4, BMPR1A, ΔNp73 and NANOG impacts on
                   stem-like human cell properties and patient outcome. Cell Death Dis 2018;9:1011.
               180. Siddique HR, Feldman DE, Chen CL, et al. NUMB phosphorylation destabilizes p53 and promotes self-renewal of tumor-initiating cells
                   by a NANOG-dependent mechanism in liver cancer. Hepatology 2015;62:1466-79.
               181. Shi H, Lambert JM, Hautefeuille A, et al. In vitro and in vivo cytotoxic effects of PRIMA-1 on hepatocellular carcinoma cells expressing
                   mutant p53ser249. Carcinogenesis 2008;29:1428-34.
               182. Bykov VJN, Eriksson SE, Bianchi J, Wiman KG. Targeting mutant p53 for efficient cancer therapy. Nat Rev Cancer 2018;18:89-102.
               183. Hientz K, Mohr A, Bhakta-Guha D, Efferth T. The role of p53 in cancer drug resistance and targeted chemotherapy. Oncotarget
                   2017;8:8921-46.
               184. Testoni B, Schinzari V, Guerrieri F, et al. p53-paralog DNp73 oncogene is repressed by IFNα/STAT2 through the recruitment of the Ezh2
                   polycomb group transcriptional repressor. Oncogene 2011;30:2670-8.
   944   945   946   947   948   949   950   951   952   953   954