Page 946 - Read Online
P. 946

Caron de Fromentel et al. Hepatoma Res 2020;6:80  I  http://dx.doi.org/10.20517/2394-5079.2020.77                     Page 15 of 18

                   association with transcription factor ERCC3. Proc Natl Acad Sci U S A 1994;91:2230-4.
               67.  Levine AJ. The common mechanisms of transformation by the small DNA tumor viruses: The inactivation of tumor suppressor gene
                   products: p53. Virology 2009;384:285-93.
               68.  Sanz G, Singh M, Peuget S, Selivanova G. Inhibition of p53 inhibitors: progress, challenges and perspectives. J Mol Cell Biol
                   2019;11:586-99.
               69.  Kubbutat MH, Jones SN, Vousden KH. Regulation of p53 stability by Mdm2. Nature 1997;387:299-303.
               70.  Cordon-Cardo C, Latres E, Drobnjak M, et al. Molecular abnormalities of mdm2 and p53 genes in adult soft tissue sarcomas. Cancer Res
                   1994;54:794-9.
               71.  Endo K, Ueda T, Ohta T, Terada T. Protein expression of MDM2 and its clinicopathological relationships in human hepatocellular
                   carcinoma. Liver 2000;20:209-15.
               72.  Bang S, Kaur S, Kurokawa M. Regulation of the p53 family proteins by the ubiquitin proteasomal pathway. Int J Mol Sci 2019;21:261.
               73.  Huang X, Qian X, Cheng C, et al. Expression of Pirh2, a p27(Kip1) ubiquitin ligase, in hepatocellular carcinoma: correlation with
                   p27(Kip1) and cell proliferation. Hum Pathol 2011;42:507-15.
               74.  Lee YH, Andersen JB, Song HT, et al. Definition of ubiquitination modulator COP1 as a novel therapeutic target in human hepatocellular
                   carcinoma. Cancer Res 2010;70:8264-9.
               75.  Leng RP, Lin Y, Ma W, et al. Pirh2, a p53-induced ubiquitin-protein ligase, promotes p53 degradation. Cell 2003;112:779-91.
               76.  Dornan D, Wertz I, Shimizu H, et al. The ubiquitin ligase COP1 is a critical negative regulator of p53. Nature 2004;429:86-92.
               77.  Shen J, Li P, Shao X, et al. The E3 ligase RING1 targets p53 for degradation and promotes cancer cell proliferation and survival. Cancer
                   Res 2018;78:359-71.
               78.  Pan Y, Wang B, Yang X, et al. CUL4A facilitates hepatocarcinogenesis by promoting cell cycle progression and epithelial-mesenchymal
                   transition. Sci Rep 2015;5:17006.
               79.  Zhu K, Li J, Li J, et al. Ring1 promotes the transformation of hepatic progenitor cells into cancer stem cells through the Wnt/β-catenin
                   signaling pathway. J Cell Biochem 2019;Online ahead of print.
               80.  Gao J, Buckley SM, Cimmino L, et al. The CUL4-DDB1 ubiquitin ligase complex controls adult and embryonic stem cell differentiation
                   and homeostasis. Elife 2015;4:e07539.
               81.  Surget S, Khoury MP, Bourdon JC. Uncovering the role of p53 splice variants in human malignancy: a clinical perspective. Onco Targets
                   Ther 2013;7:57-68.
               82.  Davison TS, Vagner C, Kaghad M, et al. p73 and p63 are homotetramers capable of weak heterotypic interactions with each other but not
                   with p53. J Biol Chem 1999;274:18709-14.
               83.  Irwin M, Marin MC, Phillips AC, et al. Role for the p53 homologue p73 in E2F-1-induced apoptosis. Nature 2000;407:645-8.
               84.  Seelan RS, Irwin M, van der Stoop P, et al. The human p73 promoter: characterization and identification of functional E2F binding sites.
                   Neoplasia 2002;4:195-203.
               85.  Stiewe T, Pützer BM. Role of the p53-homologue p73 in E2F1-induced apoptosis. Nat Genet 2000;26:464-9.
               86.  Costanzo A, Merlo P, Pediconi N, et al. DNA damage-dependent acetylation of p73 dictates the selective activation of apoptotic target
                   genes. Molecular Cell 2002;9:175-86.
               87.  Pediconi N, Ianari A, Costanzo A, et al. Differential regulation of E2F1 apoptotic target genes in response to DNA damage. Nat Cell Biol
                   2003;5:552-8.
               88.  Pediconi N, Guerrieri F, Vossio S, et al. hSirT1-dependent regulation of the PCAF-E2F1-p73 apoptotic pathway in response to DNA
                   damage. Mol Cell Biol 2009;29:1989-98.
               89.  Marabese M, Vikhanskaya F, Rainelli C, Sakai T, Broggini M. DNA damage induces transcriptional activation of p73 by removing
                   C-EBPalpha repression on E2F1. Nucleic Acids Res 2003;31:6624-32.
               90.  Fontemaggi G, Gurtner A, Strano S, et al. The transcriptional repressor ZEB regulates p73 expression at the crossroad between
                   proliferation and differentiation. Mol Cell Biol 2001;21:8461-70.
               91.  Wu S, Murai S, Kataoka K, Miyagishi M. Yin Yang 1 induces transcriptional activity of p73 through cooperation with E2F1. Biochem
                   Biophys Res Commun 2008;365:75-81.
               92.  Grob TJ, Novak U, Maisse C, et al. Human delta Np73 regulates a dominant negative feedback loop for TAp73 and p53. Cell Death
                   Differ 2001;8:1213-23.
               93.  Vossio S, Palescandolo E, Pediconi N, et al. DN-p73 is activated after DNA damage in a p53-dependent manner to regulate p53-induced
                   cell cycle arrest. Oncogene 2002;21:3796-803.
               94.  Kartasheva NN, Contente A, Lenz-Stöppler C, Roth J, Dobbelstein M. p53 induces the expression of its antagonist p73 Delta N,
                   establishing an autoregulatory feedback loop. Oncogene 2002;21:4715-27.
               95.  Nakagawa T, Takahashi M, Ozaki T, et al. Autoinhibitory regulation of p73 by Delta Np73 to modulate cell survival and death through a
                   p73-specific target element within the Delta Np73 promoter. Mol Cell Biol 2002;22:2575-85.
               96.  Lunghi P, Costanzo A, Mazzera L, et al. The p53 family protein p73 provides new insights into cancer chemosensitivity and targeting.
                   Clin Cancer Res 2009;15:6495-502.
               97.  Irwin MS, Kondo K, Marin MC, et al. Chemosensitivity linked to p73 function. Cancer Cell 2003;3:403-10.
               98.  Leong CO, Vidnovic N, DeYoung MP, Sgroi D, Ellisen LW. The p63/p73 network mediates chemosensitivity to cisplatin in a biologically
                   defined subset of primary breast cancers. J Clin Invest 2007;117:1370-80.
               99.  Ishimoto O, Kawahara C, Enjo K, et al. Possible oncogenic potential of DeltaNp73: a newly identified isoform of human p73. Cancer Res
                   2002;62:636-41.
   941   942   943   944   945   946   947   948   949   950   951