Page 945 - Read Online
P. 945

Page 14 of 18                     Caron de Fromentel et al. Hepatoma Res 2020;6:80  I  http://dx.doi.org/10.20517/2394-5079.2020.77

               33.  Jiang L, Kon N, Li T, et al. Ferroptosis as a p53-mediated activity during tumour suppression. Nature 2015;520:57-62.
               34.  Ho T, Tan BX, Lane D. How the other half lives: what p53 does when it is not being a transcription factor. Int J Mol Sci 2019;21:13.
               35.  Valente LJ, Gray DH, Michalak EM, et al. p53 efficiently suppresses tumor development in the complete absence of its cell-cycle
                   inhibitory and proapoptotic effectors p21, Puma, and Noxa. Cell Rep 2013;3:1339-45.
               36.  Pitolli C, Wang Y, Candi E, et al. p53-mediated tumor suppression: DNA-damage response and alternative mechanisms. Cancers (Basel)
                   2019;11:1983.
               37.  Barili V, Fisicaro P, Montanini B, et al. Targeting p53 and histone methyltransferases restores exhausted CD8+ T cells in HCV infection.
                   Nat Commun 2020;11:604.
               38.  Soussi T, Wiman KG. TP53: an oncogene in disguise. Cell Death Differ 2015;22:1239-49.
               39.  Parikh N, Hilsenbeck S, Creighton CJ, et al. Effects of TP53 mutational status on gene expression patterns across 10 human cancer types.
                   J Pathol 2014;232:522-33.
               40.  Seemann S, Maurici D, Olivier M, Caron de Fromentel C, Hainaut P. The tumor suppressor gene TP53: implications for cancer
                   management and therapy. Crit Rev Clin Lab Sci 2004;41:551-83.
               41.  Bouaoun L, Sonkin D, Ardin M, et al. TP53 variations in human cancers: new lessons from the IARC TP53 database and genomics data.
                   Hum Mutat 2016;37:865-76.
               42.  Puisieux A, Lim S, Groopman J, Ozturk M. Selective targeting of p53 gene mutational hotspots in human cancers by etiologically defined
                   carcinogens. Cancer Res 1991;51:6185-9.
               43.  Pfeifer GP, Denissenko MF, Olivier M, et al. Tobacco smoke carcinogens, DNA damage and p53 mutations in smoking-associated
                   cancers. Oncogene 2002;21:7435-51.
               44.  Aguilar F, Hussain SP, Cerutti P. Aflatoxin B1 induces the transversion of G-->T in codon 249 of the p53 tumor suppressor gene in human
                   hepatocytes. Proc Natl Acad Sci U S A 1993;90:8586-90.
               45.  Olivier M, Hussain SP, Caron de Fromentel C, Hainaut P, Harris CC. TP53 mutation spectra and load: a tool for generating hypotheses on
                   the etiology of cancer. IARC Sci Publ 2004:247-70.
               46.  Bressac B, Kew M, Wands J, Ozturk M. Selective G to T mutations of p53 gene in hepatocellular carcinoma from southern Africa. Nature
                   1991;350:429-31.
               47.  Gouas DA, Villar S, Ortiz-Cuaran S, et al. TP53 R249S mutation, genetic variations in HBX and risk of hepatocellular carcinoma in The
                   Gambia. Carcinogenesis 2012;33:1219-24.
               48.  Marchio A, Amougou Atsama M, Béré A, et al. Droplet digital PCR detects high rate of TP53 R249S mutants in cell-free DNA of middle
                   African patients with hepatocellular carcinoma. Clin Exp Med 2018;18:421-31.
               49.  Hussain SP, Schwank J, Staib F, Wang XW, Harris CC. TP53 mutations and hepatocellular carcinoma: insights into the etiology and
                   pathogenesis of liver cancer. Oncogene 2007;26:2166-76.
               50.  Amaddeo G, Cao Q, Ladeiro Y, et al. Integration of tumour and viral genomic characterizations in HBV-related hepatocellular
                   carcinomas. Gut 2015;64:820-9.
               51.  Levrero M, Zucman-Rossi J. Mechanisms of HBV-induced hepatocellular carcinoma. J Hepatol 2016;64:S84-101.
               52.  Brosh R, Rotter V. When mutants gain new powers: news from the mutant p53 field. Nat Rev Cancer 2009;9:701-13.
               53.  Hanel W, Marchenko N, Xu S, et al. Two hot spot mutant p53 mouse models display differential gain of function in tumorigenesis. Cell
                   Death Differ 2013;20:898-909.
               54.  Aschauer L, Muller PA. Novel targets and interaction partners of mutant p53 gain-of-function. Biochem Soc Trans 2016;44:460-6.
               55.  Dell’Orso S, Fontemaggi G, Stambolsky P, et al. ChIP-on-chip analysis of in vivo mutant p53 binding to selected gene promoters. OMICS
                   2011;15:305-12.
               56.  Lee MK, Teoh WW, Phang BH, et al. Cell-type, dose, and mutation-type specificity dictate mutant p53 functions in vivo. Cancer Cell
                   2012;22:751-64.
               57.  Sabapathy K, Lane DP. Therapeutic targeting of p53: all mutants are equal, but some mutants are more equal than others. Nat Rev Clin
                   Oncol 2018;15:13-30.
               58.  Gouas DA, Shi H, Hautefeuille AH, et al. Effects of the TP53 p.R249S mutant on proliferation and clonogenic properties in human
                   hepatocellular carcinoma cell lines: interaction with hepatitis B virus X protein. Carcinogenesis 2010;31:1475-82.
               59.  Ghebranious N, Sell S. The mouse equivalent of the human p53ser249 mutation p53ser246 enhances aflatoxin hepatocarcinogenesis in
                   hepatitis B surface antigen transgenic and p53 heterozygous null mice. Hepatology 1998;27:967-73.
               60.  Liao P, Zeng SX, Zhou X, et al. Mutant p53 gains its function via c-Myc activation upon CDK4 phosphorylation at serine 249 and
                   consequent PIN1 binding. Mol Cell 2017;68:1134-46.e6.
               61.  Besaratinia A, Kim SI, Hainaut P, Pfeifer GP. In vitro recapitulating of TP53 mutagenesis in hepatocellular carcinoma associated with
                   dietary aflatoxin B1 exposure. Gastroenterology 2009;137:1127-37, 1137.e1-5.
               62.  Sell S. Mouse models to study the interaction of risk factors for human liver cancer. Cancer Res 2003;63:7553-62.
               63.  Gearhart TL, Bouchard MJ. The hepatitis B virus X protein modulates hepatocyte proliferation pathways to stimulate viral replication. J
                   Virol 2010;84:2675-86.
               64.  Pang R, Lee TK, Poon RT, et al. Pin1 interacts with a specific serine-proline motif of hepatitis B virus X-protein to enhance
                   hepatocarcinogenesis. Gastroenterology 2007;132:1088-103.
               65.  Truant R, Antunovic J, Greenblatt J, Prives C, Cromlish JA. Direct interaction of the hepatitis B virus HBx protein with p53 leads to
                   inhibition by HBx of p53 response element-directed transactivation. J Virol 1995;69:1851-9.
               66.  Wang XW, Forrester K, Yeh H, et al. Hepatitis B virus X protein inhibits p53 sequence-specific DNA binding, transcriptional activity, and
   940   941   942   943   944   945   946   947   948   949   950