Page 40 - Read Online
P. 40
Page 40 Chakraborty et al. Extracell Vesicles Circ Nucleic Acids 2023;4:27-43 https://dx.doi.org/10.20517/evcna.2023.05
21. Korenkova O, Pepe A, Zurzolo C. Fine intercellular connections in development: TNTs, cytonemes, or intercellular bridges? Cell
Stress 2020;4:30-43. DOI
22. González-Méndez L, Gradilla AC, Guerrero I. The cytoneme connection: direct long-distance signal transfer during development.
Development 2019;146:dev174607. DOI PubMed
23. Huang H, Liu S, Kornberg TB. Glutamate signaling at cytoneme synapses. Science 2019;363:948-55. DOI PubMed PMC
24. Ramírez-Weber FA, Kornberg TB. Cytonemes: cellular processes that project to the principal signaling center in Drosophila imaginal
discs. Cell 1999;97:599-607. DOI PubMed
25. Akiyama-Oda Y, Oda H. Early patterning of the spider embryo: a cluster of mesenchymal cells at the cumulus produces Dpp signals
received by germ disc epithelial cells. Development 2003;130:1735-47. DOI PubMed
26. Kasschau MR, Ngo TD, Sperber LM, Tran KL. Formation of filopodia in earthworm (Lumbricus terrestris) coelomocytes in response
to osmotic stress. Zoology (Jena) 2007;110:66-76. DOI PubMed
27. Haimovich G, Dasgupta S, Gerst JE. RNA transfer through tunneling nanotubes. Biochem Soc Trans 2021;49:145-60. DOI PubMed
28. Abounit S, Zurzolo C. Wiring through tunneling nanotubes-from electrical signals to organelle transfer. J Cell Sci 2012;125:1089-98.
DOI PubMed
29. Zurzolo C. Tunneling nanotubes: reshaping connectivity. Curr Opin Cell Biol 2021;71:139-47. DOI PubMed
30. Sartori-Rupp A, Cordero Cervantes D, Pepe A, et al. Correlative cryo-electron microscopy reveals the structure of TNTs in neuronal
cells. Nat Commun 2019;10:342. DOI PubMed PMC
31. Wang X, Bukoreshtliev NV, Gerdes HH. Developing neurons form transient nanotubes facilitating electrical coupling and calcium
signaling with distant astrocytes. PLoS One 2012;7:e47429. DOI PubMed PMC
32. Chinnery HR, Pearlman E, McMenamin PG. Cutting edge: membrane nanotubes in vivo: a feature of MHC class II+ cells in the
mouse cornea. J Immunol 2008;180:5779-83. DOI PubMed PMC
33. Chinnery HR, Keller KE. Tunneling nanotubes and the eye: intercellular communication and implications for ocular health and
disease. Biomed Res Int 2020;2020:7246785. DOI PubMed PMC
34. Alarcon-Martinez L, Villafranca-Baughman D, Quintero H, et al. Interpericyte tunnelling nanotubes regulate neurovascular coupling.
Nature 2020;585:91-5. DOI PubMed
35. Kumar A, Kim JH, Ranjan P, et al. Influenza virus exploits tunneling nanotubes for cell-to-cell spread. Sci Rep 2017;7:40360. DOI
PubMed PMC
36. Zhu C, Shi Y, You J. Immune cell connection by tunneling nanotubes: the impact of intercellular cross-talk on the immune response
and its therapeutic applications. Mol Pharm 2021;18:772-86. DOI PubMed
37. Dupont M, Souriant S, Lugo-Villarino G, Maridonneau-Parini I, Vérollet C. tunneling nanotubes: intimate communication between
myeloid cells. Front Immunol 2018;9:43. DOI PubMed PMC
38. Batista-almeida D, Ribeiro-rodrigues T, Martins-marques T, et al. Ischaemia impacts TNT-mediated communication between cardiac
cells. Curr Res Cell Biol 2020;1:100001. DOI
39. Resnik N, Erman A, Veranič P, Kreft ME. Triple labelling of actin filaments, intermediate filaments and microtubules for broad
application in cell biology: uncovering the cytoskeletal composition in tunneling nanotubes. Histochem Cell Biol 2019;152:311-7.
DOI PubMed
40. Onfelt B, Nedvetzki S, Benninger RK, et al. Structurally distinct membrane nanotubes between human macrophages support long-
distance vesicular traffic or surfing of bacteria. J Immunol 2006;177:8476-83. DOI PubMed
41. Rustom A, Saffrich R, Markovic I, Walther P, Gerdes HH. Nanotubular highways for intercellular organelle transport. Science
2004;303:1007-10. DOI PubMed
42. Omsland M, Bruserud Ø, Gjertsen BT, Andresen V. Tunneling nanotube (TNT) formation is downregulated by cytarabine and NF-κB
inhibition in acute myeloid leukemia (AML). Oncotarget 2017;8:7946-63. DOI PubMed PMC
43. Desir S, Dickson EL, Vogel RI, et al. Tunneling nanotube formation is stimulated by hypoxia in ovarian cancer cells. Oncotarget
2016;7:43150-61. DOI PubMed PMC
44. Lou E, Zhai E, Sarkari A, et al. Cellular and molecular networking within the ecosystem of cancer cell communication via tunneling
nanotubes. Front Cell Dev Biol 2018;6:95. DOI PubMed PMC
45. Eugenin EA, Gaskill PJ, Berman JW. Tunneling nanotubes (TNT) are induced by HIV-infection of macrophages: a potential
mechanism for intercellular HIV trafficking. Cell Immunol 2009;254:142-8. DOI PubMed PMC
46. Pepe A, Pietropaoli S, Vos M, Barba-Spaeth G, Zurzolo C. Tunneling nanotubes provide a route for SARS-CoV-2 spreading. Sci Adv
2022;8:eabo0171. DOI PubMed PMC
47. Panasiuk M, Rychłowski M, Derewońko N, Bieńkowska-Szewczyk K. Tunneling Nanotubes as a novel route of cell-to-cell spread of
herpesviruses. J Virol 2018:92. DOI PubMed PMC
48. Victoria GS, Zurzolo C. The spread of prion-like proteins by lysosomes and tunneling nanotubes: Implications for neurodegenerative
diseases. J Cell Biol 2017;216:2633-44. DOI PubMed PMC
49. Burt R, Dey A, Aref S, et al. Activated stromal cells transfer mitochondria to rescue acute lymphoblastic leukemia cells from
oxidative stress. Blood 2019;134:1415-29. DOI PubMed PMC
50. Pasquier J, Guerrouahen BS, Al Thawadi H, et al. Preferential transfer of mitochondria from endothelial to cancer cells through
tunneling nanotubes modulates chemoresistance. J Transl Med 2013;11:94. DOI PubMed PMC
51. Pinto G, Saenz-de-Santa-Maria I, Chastagner P, et al. Patient-derived glioblastoma stem cells transfer mitochondria through tunneling

