Page 40 - Read Online
P. 40

Page 40             Chakraborty et al. Extracell Vesicles Circ Nucleic Acids 2023;4:27-43  https://dx.doi.org/10.20517/evcna.2023.05

               21.       Korenkova O, Pepe A, Zurzolo C. Fine intercellular connections in development: TNTs, cytonemes, or intercellular bridges? Cell
                    Stress 2020;4:30-43.  DOI
               22.       González-Méndez L, Gradilla AC, Guerrero I. The cytoneme connection: direct long-distance signal transfer during development.
                    Development 2019;146:dev174607.  DOI  PubMed
               23.       Huang H, Liu S, Kornberg TB. Glutamate signaling at cytoneme synapses. Science 2019;363:948-55.  DOI  PubMed  PMC
               24.       Ramírez-Weber FA, Kornberg TB. Cytonemes: cellular processes that project to the principal signaling center in Drosophila imaginal
                    discs. Cell 1999;97:599-607.  DOI  PubMed
               25.       Akiyama-Oda Y, Oda H. Early patterning of the spider embryo: a cluster of mesenchymal cells at the cumulus produces Dpp signals
                    received by germ disc epithelial cells. Development 2003;130:1735-47.  DOI  PubMed
               26.       Kasschau MR, Ngo TD, Sperber LM, Tran KL. Formation of filopodia in earthworm (Lumbricus terrestris) coelomocytes in response
                    to osmotic stress. Zoology (Jena) 2007;110:66-76.  DOI  PubMed
               27.       Haimovich G, Dasgupta S, Gerst JE. RNA transfer through tunneling nanotubes. Biochem Soc Trans 2021;49:145-60.  DOI  PubMed
               28.       Abounit S, Zurzolo C. Wiring through tunneling nanotubes-from electrical signals to organelle transfer. J Cell Sci 2012;125:1089-98.
                    DOI  PubMed
               29.       Zurzolo C. Tunneling nanotubes: reshaping connectivity. Curr Opin Cell Biol 2021;71:139-47.  DOI  PubMed
               30.       Sartori-Rupp A, Cordero Cervantes D, Pepe A, et al. Correlative cryo-electron microscopy reveals the structure of TNTs in neuronal
                    cells. Nat Commun 2019;10:342.  DOI  PubMed  PMC
               31.       Wang X, Bukoreshtliev NV, Gerdes HH. Developing neurons form transient nanotubes facilitating electrical coupling and calcium
                    signaling with distant astrocytes. PLoS One 2012;7:e47429.  DOI  PubMed  PMC
               32.       Chinnery HR, Pearlman E, McMenamin PG. Cutting edge: membrane nanotubes in vivo: a feature of MHC class II+ cells in the
                    mouse cornea. J Immunol 2008;180:5779-83.  DOI  PubMed  PMC
               33.       Chinnery HR, Keller KE. Tunneling nanotubes and the eye: intercellular communication and implications for ocular health and
                    disease. Biomed Res Int 2020;2020:7246785.  DOI  PubMed  PMC
               34.       Alarcon-Martinez L, Villafranca-Baughman D, Quintero H, et al. Interpericyte tunnelling nanotubes regulate neurovascular coupling.
                    Nature 2020;585:91-5.  DOI  PubMed
               35.       Kumar A, Kim JH, Ranjan P, et al. Influenza virus exploits tunneling nanotubes for cell-to-cell spread. Sci Rep 2017;7:40360.  DOI
                    PubMed  PMC
               36.       Zhu C, Shi Y, You J. Immune cell connection by tunneling nanotubes: the impact of intercellular cross-talk on the immune response
                    and its therapeutic applications. Mol Pharm 2021;18:772-86.  DOI  PubMed
               37.       Dupont M, Souriant S, Lugo-Villarino G, Maridonneau-Parini I, Vérollet C. tunneling nanotubes: intimate communication between
                    myeloid cells. Front Immunol 2018;9:43.  DOI  PubMed  PMC
               38.       Batista-almeida D, Ribeiro-rodrigues T, Martins-marques T, et al. Ischaemia impacts TNT-mediated communication between cardiac
                    cells. Curr Res Cell Biol 2020;1:100001.  DOI
               39.       Resnik N, Erman A, Veranič P, Kreft ME. Triple labelling of actin filaments, intermediate filaments and microtubules for broad
                    application in cell biology: uncovering the cytoskeletal composition in tunneling nanotubes. Histochem Cell Biol 2019;152:311-7.
                    DOI  PubMed
               40.       Onfelt B, Nedvetzki S, Benninger RK, et al. Structurally distinct membrane nanotubes between human macrophages support long-
                    distance vesicular traffic or surfing of bacteria. J Immunol 2006;177:8476-83.  DOI  PubMed
               41.       Rustom A, Saffrich R, Markovic I, Walther P, Gerdes HH. Nanotubular highways for intercellular organelle transport. Science
                    2004;303:1007-10.  DOI  PubMed
               42.       Omsland M, Bruserud Ø, Gjertsen BT, Andresen V. Tunneling nanotube (TNT) formation is downregulated by cytarabine and NF-κB
                    inhibition in acute myeloid leukemia (AML). Oncotarget 2017;8:7946-63.  DOI  PubMed  PMC
               43.       Desir S, Dickson EL, Vogel RI, et al. Tunneling nanotube formation is stimulated by hypoxia in ovarian cancer cells. Oncotarget
                    2016;7:43150-61.  DOI  PubMed  PMC
               44.       Lou E, Zhai E, Sarkari A, et al. Cellular and molecular networking within the ecosystem of cancer cell communication via tunneling
                    nanotubes. Front Cell Dev Biol 2018;6:95.  DOI  PubMed  PMC
               45.       Eugenin EA, Gaskill PJ, Berman JW. Tunneling nanotubes (TNT) are induced by HIV-infection of macrophages: a potential
                    mechanism for intercellular HIV trafficking. Cell Immunol 2009;254:142-8.  DOI  PubMed  PMC
               46.       Pepe A, Pietropaoli S, Vos M, Barba-Spaeth G, Zurzolo C. Tunneling nanotubes provide a route for SARS-CoV-2 spreading. Sci Adv
                    2022;8:eabo0171.  DOI  PubMed  PMC
               47.       Panasiuk M, Rychłowski M, Derewońko N, Bieńkowska-Szewczyk K. Tunneling Nanotubes as a novel route of cell-to-cell spread of
                    herpesviruses. J Virol 2018:92.  DOI  PubMed  PMC
               48.       Victoria GS, Zurzolo C. The spread of prion-like proteins by lysosomes and tunneling nanotubes: Implications for neurodegenerative
                    diseases. J Cell Biol 2017;216:2633-44.  DOI  PubMed  PMC
               49.       Burt R, Dey A, Aref S, et al. Activated stromal cells transfer mitochondria to rescue acute lymphoblastic leukemia cells from
                    oxidative stress. Blood 2019;134:1415-29.  DOI  PubMed  PMC
               50.       Pasquier J, Guerrouahen BS, Al Thawadi H, et al. Preferential transfer of mitochondria from endothelial to cancer cells through
                    tunneling nanotubes modulates chemoresistance. J Transl Med 2013;11:94.  DOI  PubMed  PMC
               51.       Pinto G, Saenz-de-Santa-Maria I, Chastagner P, et al. Patient-derived glioblastoma stem cells transfer mitochondria through tunneling
   35   36   37   38   39   40   41   42   43   44   45