Page 42 - Read Online
P. 42

Page 42             Chakraborty et al. Extracell Vesicles Circ Nucleic Acids 2023;4:27-43  https://dx.doi.org/10.20517/evcna.2023.05

               82.       Chen J, Cao J. Astrocyte-to-neuron transportation of enhanced green fluorescent protein in cerebral cortex requires F-actin dependent
                    tunneling nanotubes. Sci Rep 2021;11:16798.  DOI  PubMed  PMC
               83.       Lin TK, Chen SD, Chuang YC, et al. Mitochondrial Transfer of Wharton’s Jelly Mesenchymal Stem Cells Eliminates Mutation
                    Burden  and  Rescues  Mitochondrial  Bioenergetics  in  Rotenone-Stressed  MELAS  Fibroblasts.  Oxid  Med  Cell  Longev
                    2019;2019:9537504.  DOI  PubMed  PMC
               84.       Haimovich G, Ecker CM, Dunagin MC, et al. Intercellular mRNA trafficking via membrane nanotube-like extensions in mammalian
                    cells. Proc Natl Acad Sci USA 2017;114:E9873-82.  DOI  PubMed  PMC
               85.       Su Q, Igyártó BZ. Keratinocytes Share gene expression fingerprint with epidermal langerhans cells via mRNA transfer. J Invest
                    Dermatol 2019;139:2313-2323.e8.  DOI  PubMed
               86.       El Najjar F, Cifuentes-Muñoz N, Chen J, et al. Human metapneumovirus Induces reorganization of the actin cytoskeleton for direct
                    cell-to-cell spread. PLoS Pathog 2016;12:e1005922.  DOI  PubMed  PMC
               87.       Anand S, Majeti BK, Acevedo LM, et al. MicroRNA-132-mediated loss of p120RasGAP activates the endothelium to facilitate
                    pathological angiogenesis. Nat Med 2010;16:909-14.  DOI  PubMed  PMC
               88.       Thayanithy V, Dickson EL, Steer C, Subramanian S, Lou E. Tumor-stromal cross talk: direct cell-to-cell transfer of oncogenic
                    microRNAs via tunneling nanotubes. Transl Res 2014;164:359-65.  DOI  PubMed  PMC
               89.       Lu JJ, Yang WM, Li F, Zhu W, Chen Z. Tunneling nanotubes mediated microrna-155 intercellular transportation promotes bladder
                    cancer cells' invasive and proliferative capacity. Int J Nanomedicine 2019;14:9731-43.  DOI  PubMed  PMC
               90.       Onfelt B, Nedvetzki S, Yanagi K, Davis DM. Cutting edge: membrane nanotubes connect immune cells. J Immunol 2004;173:1511-
                    3.  DOI  PubMed
               91.       Marzo L, Gousset K, Zurzolo C. Multifaceted roles of tunneling nanotubes in intercellular communication. Front Physiol 2012:3.
                    DOI  PubMed  PMC
               92.       Vignais ML, Caicedo A, Brondello JM, Jorgensen C. Cell connections by tunneling nanotubes: effects of mitochondrial trafficking on
                    target cell metabolism, homeostasis, and response to therapy. Stem Cells Int 2017;2017:6917941.  DOI  PubMed  PMC
               93.       Koyanagi M, Brandes RP, Haendeler J, Zeiher AM, Dimmeler S. Cell-to-cell connection of endothelial progenitor cells with cardiac
                    myocytes by nanotubes: a novel mechanism for cell fate changes? Circ Res 2005;96:1039-41.  DOI  PubMed
               94.       Cheng XY, Biswas S, Li J, et al. Human iPSCs derived astrocytes rescue rotenone-induced mitochondrial dysfunction and
                    dopaminergic neurodegeneration in vitro by donating functional mitochondria. Transl Neurodegener 2020;9:13.  DOI  PubMed  PMC
               95.       Rostami J, Holmqvist S, Lindström V, et al. Human astrocytes transfer aggregated alpha-synuclein via tunneling nanotubes. J
                    Neurosci 2017;37:11835-53.  DOI  PubMed  PMC
               96.       Chakraborty R, Zurzolo C. Tunneling nanotubes between neuronal and microglial cells allow bi-directional transfer of α-Synuclein
                    and mitochondria. 2022:2022.12.13.519450.  DOI
               97.       Gousset K, Schiff E, Langevin C, et al. Prions hijack tunnelling nanotubes for intercellular spread. Nat Cell Biol 2009;11:328-36.
                    DOI  PubMed
               98.       Kadiu I, Gendelman HE. Human immunodeficiency virus type 1 endocytic trafficking through macrophage bridging conduits
                    facilitates spread of infection. J Neuroimmune Pharmacol 2011;6:658-75.  DOI  PubMed  PMC
               99.       Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 1991;82:239-59.  DOI  PubMed
               100.      Bellingham S, Guo B, Coleman B, Hill A. Exosomes: vehicles for the transfer of toxic proteins associated with neurodegenerative
                    diseases? Front Physiol 2012:3.  DOI  PubMed  PMC
               101.      Fevrier B, Vilette D, Archer F, et al. Cells release prions in association with exosomes. Proc Natl Acad Sci USA 2004;101:9683-8.
                    DOI  PubMed  PMC
               102.      Saman S, Kim W, Raya M, et al. Exosome-associated tau is secreted in tauopathy models and is selectively phosphorylated in
                    cerebrospinal fluid in early Alzheimer disease. J Biol Chem 2012;287:3842-9.  DOI  PubMed  PMC
               103.      Vingtdeux V, Hamdane M, Loyens A, et al. Alkalizing drugs induce accumulation of amyloid precursor protein by-products in
                    luminal vesicles of multivesicular bodies. J Biol Chem 2007;282:18197-205.  DOI  PubMed
               104.      Emmanouilidou E, Melachroinou K, Roumeliotis T, et al. Cell-produced alpha-synuclein is secreted in a calcium-dependent manner
                    by exosomes and impacts neuronal survival. J Neurosci 2010;30:6838-51.  DOI  PubMed  PMC
               105.      Delenclos M, Trendafilova T, Mahesh D, et al. Investigation of endocytic pathways for the internalization of exosome-associated
                    oligomeric alpha-synuclein. Front Neurosci 2017:11.  DOI  PubMed  PMC
               106.      Gomes C, Keller S, Altevogt P, Costa J. Evidence for secretion of Cu,Zn superoxide dismutase via exosomes from a cell model of
                    amyotrophic lateral sclerosis. Neurosci Lett 2007;428:43-6.  DOI  PubMed
               107.      Basso M, Pozzi S, Tortarolo M, et al. Mutant copper-zinc superoxide dismutase (SOD1) induces protein secretion pathway alterations
                    and exosome release in astrocytes: implications for disease spreading and motor neuron pathology in amyotrophic lateral sclerosis. J
                    Biol Chem 2013;288:15699-711.  DOI  PubMed  PMC
               108.      Silverman JM, Christy D, Shyu CC, et al. CNS-derived extracellular vesicles from superoxide dismutase 1 (SOD1)(G93A) ALS mice
                    originate from astrocytes and neurons and carry misfolded SOD1. J Biol Chem 2019;294:3744-59.  DOI  PubMed  PMC
               109.      Zhang X, Abels ER, Redzic JS, Margulis J, Finkbeiner S, Breakefield XO. Potential Transfer of polyglutamine and CAG-repeat RNA
                    in extracellular vesicles in huntington’s disease: background and evaluation in cell culture. Cell Mol Neurobiol 2016;36:459-70.  DOI
                    PubMed  PMC
               110.      Jeon I, Cicchetti F, Cisbani G, et al. Human-to-mouse prion-like propagation of mutant huntingtin protein. Acta Neuropathol
   37   38   39   40   41   42   43   44   45   46   47