Page 41 - Read Online
P. 41

Chakraborty et al. Extracell Vesicles Circ Nucleic Acids 2023;4:27-43  https://dx.doi.org/10.20517/evcna.2023.05  Page 41

                    nanotubes in tumor organoids. Biochem J 2021;478:21-39.  DOI  PubMed  PMC
               52.       Valdebenito S, Malik S, Luu R, et al. Tunneling nanotubes, TNT, communicate glioblastoma with surrounding non-tumor astrocytes
                    to adapt them to hypoxic and metabolic tumor conditions. Sci Rep 2021;11:14556.  DOI  PubMed  PMC
               53.       Henderson JM, Ljubojevic N, Chaze T, et al. Arp2/3 inhibition switches Eps8’s network associations to favour longer actin filament
                    formation necessary for tunneling nanotubes. bioRxiv 2022.  DOI
               54.       Gousset K, Marzo L, Commere PH, Zurzolo C. Myo10 is a key regulator of TNT formation in neuronal cells. J Cell Sci
                    2013;126:4424-35.  DOI  PubMed
               55.       Ljubojevic N, Henderson JM, Zurzolo C. The ways of actin: why tunneling nanotubes are unique cell protrusions. Trends Cell Biol
                    2021;31:130-42.  DOI  PubMed
               56.       Bhat S, Ljubojevic N, Zhu S, Fukuda M, Echard A, Zurzolo C. Rab35 and its effectors promote formation of tunneling nanotubes in
                    neuronal cells. Sci Rep 2020;10:16803.  DOI  PubMed  PMC
               57.       Delage E, Cervantes DC, Pénard E, et al. Differential identity of Filopodia and Tunneling Nanotubes revealed by the opposite
                    functions of actin regulatory complexes. Sci Rep 2016;6:39632.  DOI  PubMed  PMC
               58.       Kim JH, Jin P, Duan R, Chen EH. Mechanisms of myoblast fusion during muscle development. Curr Opin Genet Dev 2015;32:162-
                    70.  DOI  PubMed  PMC
               59.       Pepe A, Manzano RN, Sartori-Rupp A, Brou C, Zurzolo C. N-Cadherin and alpha-catenin regulate formation of functional tunneling
                    nanotubes. BioRxiv 2023.  DOI
               60.       Manzano RN, Chaze T, Rubinstein E, Matondo M, Zurzolo C, Brou C. Proteomic landscape of tunneling nanotubes reveals CD9 and
                    CD81 tetraspanins as key regulators. Cell Biology 2022.  DOI
               61.       Kolba MD, Dudka W, Zaręba-Kozioł M, et al. Tunneling nanotube-mediated intercellular vesicle and protein transfer in the stroma-
                    provided imatinib resistance in chronic myeloid leukemia cells. Cell Death Dis 2019;10:817.  DOI  PubMed  PMC
               62.       Sun X, Wang Y, Zhang J, et al. Tunneling-nanotube direction determination in neurons and astrocytes. Cell Death Dis 2012;3:e438.
                    DOI  PubMed  PMC
               63.       Yamashita YM, Inaba M, Buszczak M. Specialized intercellular communications via cytonemes and nanotubes. Annu Rev Cell Dev
                    Biol 2018;34:59-84.  DOI  PubMed  PMC
               64.       Hu HT, Sasakura N, Matsubara D, et al. Involvement of I-BAR protein IRSp53 in tumor cell growth via extracellular microvesicle
                    secretion. BioRxiv 2020.  DOI
               65.       Poret A, Dibsy R, Merida P, Trausch A, Inamdar K, Muriaux D. Extracellular vesicles containing the I-BAR protein IRSp53 are
                    released from the cell plasma membrane in an Arp2/3 dependent manner. Biol Cell 2022;114:259-75.  DOI
               66.       Frolikova M, Manaskova-Postlerova P, Cerny J, et al. CD9 and CD81 Interactions and Their Structural Modelling in Sperm Prior to
                    Fertilization. Int J Mol Sci 2018;19:1236.  DOI  PubMed  PMC
               67.       Gerdes HH, Carvalho RN. Intercellular transfer mediated by tunneling nanotubes. Curr Opin Cell Biol 2008;20:470-5.  DOI  PubMed
               68.       Cervantes D, Zurzolo C. Peering into tunneling nanotubes-The path forward. EMBO J 2021;40:e105789.  DOI  PubMed  PMC
               69.       Loria F, Vargas JY, Bousset L, et al. α-Synuclein transfer between neurons and astrocytes indicates that astrocytes play a role in
                    degradation rather than in spreading. Acta Neuropathol 2017;134:789-808.  DOI  PubMed
               70.       Dilsizoglu Senol A, Samarani M, Syan S, et al. α-Synuclein fibrils subvert lysosome structure and function for the propagation of
                    protein misfolding between cells through tunneling nanotubes. PLoS Biol 2021;19:e3001287.  DOI  PubMed  PMC
               71.       Chastagner P, Loria F, Vargas JY, et al. Fate and propagation of endogenously formed Tau aggregates in neuronal cells. EMBO Mol
                    Med 2020;12:e12025.  DOI  PubMed  PMC
               72.       Wang X, Gerdes HH. Transfer of mitochondria via tunneling nanotubes rescues apoptotic PC12 cells. Cell Death Differ
                    2015;22:1181-91.  DOI  PubMed  PMC
               73.       Plotnikov EY, Khryapenkova TG, Galkina SI, Sukhikh GT, Zorov DB. Cytoplasm and organelle transfer between mesenchymal
                    multipotent stromal cells and renal tubular cells in co-culture. Exp Cell Res 2010;316:2447-55.  DOI  PubMed
               74.       He K, Shi X, Zhang X, et al. Long-distance intercellular connectivity between cardiomyocytes and cardiofibroblasts mediated by
                    membrane nanotubes. Cardiovasc Res 2011;92:39-47.  DOI  PubMed
               75.       Watkins SC, Salter RD. Functional connectivity between immune cells mediated by tunneling nanotubules. Immunity 2005;23:309-
                    18.  DOI  PubMed
               76.       Hase K, Kimura S, Takatsu H, et al. M-Sec promotes membrane nanotube formation by interacting with Ral and the exocyst
                    complex. Nat Cell Biol 2009;11:1427-32.  DOI  PubMed
               77.       Smith IF, Shuai J, Parker I. Active generation and propagation of Ca2+ signals within tunneling membrane nanotubes. Biophys J
                    2011;100:L37-9.  DOI  PubMed  PMC
               78.       Wang X, Veruki ML, Bukoreshtliev NV, Hartveit E, Gerdes HH. Animal cells connected by nanotubes can be electrically coupled
                    through interposed gap-junction channels. Proc Natl Acad Sci USA 2010;107:17194-9.  DOI  PubMed  PMC
               79.       Sowinski S, Jolly C, Berninghausen O, et al. Membrane nanotubes physically connect T cells over long distances presenting a novel
                    route for HIV-1 transmission. Nat Cell Biol 2008;10:211-9.  DOI  PubMed
               80.       Arkwright PD, Luchetti F, Tour J, et al. Fas stimulation of T lymphocytes promotes rapid intercellular exchange of death signals via
                    membrane nanotubes. Cell Res 2010;20:72-88.  DOI  PubMed  PMC
               81.       Chauveau A, Aucher A, Eissmann P, Vivier E, Davis DM. Membrane nanotubes facilitate long-distance interactions between natural
                    killer cells and target cells. Proc Natl Acad Sci USA 2010;107:5545-50.  DOI  PubMed  PMC
   36   37   38   39   40   41   42   43   44   45   46