Page 41 - Read Online
P. 41
Chakraborty et al. Extracell Vesicles Circ Nucleic Acids 2023;4:27-43 https://dx.doi.org/10.20517/evcna.2023.05 Page 41
nanotubes in tumor organoids. Biochem J 2021;478:21-39. DOI PubMed PMC
52. Valdebenito S, Malik S, Luu R, et al. Tunneling nanotubes, TNT, communicate glioblastoma with surrounding non-tumor astrocytes
to adapt them to hypoxic and metabolic tumor conditions. Sci Rep 2021;11:14556. DOI PubMed PMC
53. Henderson JM, Ljubojevic N, Chaze T, et al. Arp2/3 inhibition switches Eps8’s network associations to favour longer actin filament
formation necessary for tunneling nanotubes. bioRxiv 2022. DOI
54. Gousset K, Marzo L, Commere PH, Zurzolo C. Myo10 is a key regulator of TNT formation in neuronal cells. J Cell Sci
2013;126:4424-35. DOI PubMed
55. Ljubojevic N, Henderson JM, Zurzolo C. The ways of actin: why tunneling nanotubes are unique cell protrusions. Trends Cell Biol
2021;31:130-42. DOI PubMed
56. Bhat S, Ljubojevic N, Zhu S, Fukuda M, Echard A, Zurzolo C. Rab35 and its effectors promote formation of tunneling nanotubes in
neuronal cells. Sci Rep 2020;10:16803. DOI PubMed PMC
57. Delage E, Cervantes DC, Pénard E, et al. Differential identity of Filopodia and Tunneling Nanotubes revealed by the opposite
functions of actin regulatory complexes. Sci Rep 2016;6:39632. DOI PubMed PMC
58. Kim JH, Jin P, Duan R, Chen EH. Mechanisms of myoblast fusion during muscle development. Curr Opin Genet Dev 2015;32:162-
70. DOI PubMed PMC
59. Pepe A, Manzano RN, Sartori-Rupp A, Brou C, Zurzolo C. N-Cadherin and alpha-catenin regulate formation of functional tunneling
nanotubes. BioRxiv 2023. DOI
60. Manzano RN, Chaze T, Rubinstein E, Matondo M, Zurzolo C, Brou C. Proteomic landscape of tunneling nanotubes reveals CD9 and
CD81 tetraspanins as key regulators. Cell Biology 2022. DOI
61. Kolba MD, Dudka W, Zaręba-Kozioł M, et al. Tunneling nanotube-mediated intercellular vesicle and protein transfer in the stroma-
provided imatinib resistance in chronic myeloid leukemia cells. Cell Death Dis 2019;10:817. DOI PubMed PMC
62. Sun X, Wang Y, Zhang J, et al. Tunneling-nanotube direction determination in neurons and astrocytes. Cell Death Dis 2012;3:e438.
DOI PubMed PMC
63. Yamashita YM, Inaba M, Buszczak M. Specialized intercellular communications via cytonemes and nanotubes. Annu Rev Cell Dev
Biol 2018;34:59-84. DOI PubMed PMC
64. Hu HT, Sasakura N, Matsubara D, et al. Involvement of I-BAR protein IRSp53 in tumor cell growth via extracellular microvesicle
secretion. BioRxiv 2020. DOI
65. Poret A, Dibsy R, Merida P, Trausch A, Inamdar K, Muriaux D. Extracellular vesicles containing the I-BAR protein IRSp53 are
released from the cell plasma membrane in an Arp2/3 dependent manner. Biol Cell 2022;114:259-75. DOI
66. Frolikova M, Manaskova-Postlerova P, Cerny J, et al. CD9 and CD81 Interactions and Their Structural Modelling in Sperm Prior to
Fertilization. Int J Mol Sci 2018;19:1236. DOI PubMed PMC
67. Gerdes HH, Carvalho RN. Intercellular transfer mediated by tunneling nanotubes. Curr Opin Cell Biol 2008;20:470-5. DOI PubMed
68. Cervantes D, Zurzolo C. Peering into tunneling nanotubes-The path forward. EMBO J 2021;40:e105789. DOI PubMed PMC
69. Loria F, Vargas JY, Bousset L, et al. α-Synuclein transfer between neurons and astrocytes indicates that astrocytes play a role in
degradation rather than in spreading. Acta Neuropathol 2017;134:789-808. DOI PubMed
70. Dilsizoglu Senol A, Samarani M, Syan S, et al. α-Synuclein fibrils subvert lysosome structure and function for the propagation of
protein misfolding between cells through tunneling nanotubes. PLoS Biol 2021;19:e3001287. DOI PubMed PMC
71. Chastagner P, Loria F, Vargas JY, et al. Fate and propagation of endogenously formed Tau aggregates in neuronal cells. EMBO Mol
Med 2020;12:e12025. DOI PubMed PMC
72. Wang X, Gerdes HH. Transfer of mitochondria via tunneling nanotubes rescues apoptotic PC12 cells. Cell Death Differ
2015;22:1181-91. DOI PubMed PMC
73. Plotnikov EY, Khryapenkova TG, Galkina SI, Sukhikh GT, Zorov DB. Cytoplasm and organelle transfer between mesenchymal
multipotent stromal cells and renal tubular cells in co-culture. Exp Cell Res 2010;316:2447-55. DOI PubMed
74. He K, Shi X, Zhang X, et al. Long-distance intercellular connectivity between cardiomyocytes and cardiofibroblasts mediated by
membrane nanotubes. Cardiovasc Res 2011;92:39-47. DOI PubMed
75. Watkins SC, Salter RD. Functional connectivity between immune cells mediated by tunneling nanotubules. Immunity 2005;23:309-
18. DOI PubMed
76. Hase K, Kimura S, Takatsu H, et al. M-Sec promotes membrane nanotube formation by interacting with Ral and the exocyst
complex. Nat Cell Biol 2009;11:1427-32. DOI PubMed
77. Smith IF, Shuai J, Parker I. Active generation and propagation of Ca2+ signals within tunneling membrane nanotubes. Biophys J
2011;100:L37-9. DOI PubMed PMC
78. Wang X, Veruki ML, Bukoreshtliev NV, Hartveit E, Gerdes HH. Animal cells connected by nanotubes can be electrically coupled
through interposed gap-junction channels. Proc Natl Acad Sci USA 2010;107:17194-9. DOI PubMed PMC
79. Sowinski S, Jolly C, Berninghausen O, et al. Membrane nanotubes physically connect T cells over long distances presenting a novel
route for HIV-1 transmission. Nat Cell Biol 2008;10:211-9. DOI PubMed
80. Arkwright PD, Luchetti F, Tour J, et al. Fas stimulation of T lymphocytes promotes rapid intercellular exchange of death signals via
membrane nanotubes. Cell Res 2010;20:72-88. DOI PubMed PMC
81. Chauveau A, Aucher A, Eissmann P, Vivier E, Davis DM. Membrane nanotubes facilitate long-distance interactions between natural
killer cells and target cells. Proc Natl Acad Sci USA 2010;107:5545-50. DOI PubMed PMC

