Page 222 - Read Online
P. 222
Page 16 Loh et al. Extracell Vesicles Circ Nucleic Acids 2023;4:568-87 https://dx.doi.org/10.20517/evcna.2023.34
Financial support and sponsorship
This research was supported by the Intramural Research Program (to Loh YP, NICHD #ZIA HD000056),
and a K22 grant to Park JJ (#1K22HD056137-01A1) from The Eunice Kennedy Shriver National Institute of
Child Health and Human Development (NICHD), National Institutes of Health, USA.
Conflicts of interest
Y. Peng Loh is the Editor-in-cheif of the journal Extracellular Vesicles and Circulating Nucleic Acids, while
the other authors have declared that they have no conflicts of interest..
Ethical approval and consent to participate
Not applicable.
Consent for publication
Not applicable.
Copyright
© 2023.
REFERENCES
1. Jena BP. Cell secretion and membrane fusion. Domest Anim Endocrinol 2005;29:145-65. DOI PubMed
2. Hicke L, Schekman R. Molecular machinery required for protein transport from the endoplasmic reticulum to the Golgi complex.
Bioessays 1990;12:253-8. DOI
3. Andreeva AV, Zheng H, Saint-jore CM, Kutuzov MA, Evans DE, Hawes CR. Organization of transport from endoplasmic reticulum
to Golgi in higher plants. Biochem Soc T 2000;28:505-12. DOI PubMed
4. Kim T, Gondré-Lewis MC, Arnaoutova I, Loh YP. Dense-core secretory granule biogenesis. Physiology 2006;21:124-33. DOI
PubMed
5. Stalder D, Gershlick DC. Direct trafficking pathways from the Golgi apparatus to the plasma membrane. Semin Cell Dev Biol
2020;107:112-25. DOI PubMed PMC
6. Kulp A, Kuehn MJ. Biological functions and biogenesis of secreted bacterial outer membrane vesicles. Annu Rev Microbiol
2010;64:163-84. DOI PubMed PMC
7. Bonifacino JS. Vesicular transport earns a Nobel. Trends Cell Biol 2014;24:3-5. DOI PubMed PMC
8. Liu M, Huang Y, Xu X, et al. Normal and defective pathways in biogenesis and maintenance of the insulin storage pool. J Clin Invest
2021;131:142240. DOI PubMed PMC
9. Wen G, Pang H, Wu X, Jiang E, Zhang X, Zhan X. Proteomic characterization of secretory granules in dopaminergic neurons
indicates chromogranin/secretogranin-mediated protein processing impairment in Parkinson's disease. Aging 2021;13:20335-58. DOI
PubMed PMC
10. Chen H, Victor AK, Klein J, et al. Loss of MAGEL2 in Prader-Willi syndrome leads to decreased secretory granule and neuropeptide
production. JCI Insight 2020;5:138576. DOI PubMed PMC
11. Chung KN, Walter P, Aponte GW, Moore HP. Molecular sorting in the secretory pathway. Science 1989;243:192-7. DOI PubMed
12. Trueta C. An analytical method to measure the contribution of clear synaptic and dense-core peri-synaptic vesicles to
neurotransmitter release from synaptic terminals with two classes of secretory vesicles. MethodsX 2021;8:101374. DOI PubMed
PMC
13. Edwards RH. Neurotransmitter release: variations on a theme. Curr Biol 1998;8:R883-5. DOI PubMed
14. Gondré-lewis MC, Park JJ, Loh YP. Cellular mechanisms for the biogenesis and transport of synaptic and dense-core vesicles. Int
Rev Cell Mol Biol ;2012:299:27-115. DOI
15. Bartolomucci A, Possenti R, Mahata SK, Fischer-Colbrie R, Loh YP, Salton SR. The extended granin family: structure, function, and
biomedical implications. Endocr Rev 2011;32:755-97. DOI PubMed PMC
16. Koshimizu H, Kim T, Cawley NX, Loh YP. Chromogranin A: a new proposal for trafficking, processing and induction of granule
biogenesis. Regul Pept 2010;160:153-9. DOI PubMed PMC
17. Loh YP, Maldonado A, Zhang C, Tam WH, Cawley N. Mechanism of sorting proopiomelanocortin and proenkephalin to the
regulated secretory pathway of neuroendocrine cells. Ann N Y Acad Sci 2002;971:416-25. DOI
18. Campelo F, Tian M, von Blume J. Rediscovering the intricacies of secretory granule biogenesis. Curr Opin Cell Biol
2023;85:102231. DOI PubMed
19. Arvan P, Castle D. Sorting and storage during secretory granule biogenesis: looking backward and looking forward. Biochem J
1998;332:593-610. DOI PubMed PMC

