Page 222 - Read Online
P. 222

Page 16                 Loh et al. Extracell Vesicles Circ Nucleic Acids 2023;4:568-87  https://dx.doi.org/10.20517/evcna.2023.34

               Financial support and sponsorship
               This research was supported by the Intramural Research Program (to Loh YP, NICHD #ZIA HD000056),
               and a K22 grant to Park JJ (#1K22HD056137-01A1) from The Eunice Kennedy Shriver National Institute of
               Child Health and Human Development (NICHD), National Institutes of Health, USA.

               Conflicts of interest
               Y. Peng Loh is the Editor-in-cheif of the journal Extracellular Vesicles and Circulating Nucleic Acids, while
               the other authors have declared that they have no conflicts of interest..

               Ethical approval and consent to participate
               Not applicable.

               Consent for publication
               Not applicable.

               Copyright
               © 2023.



               REFERENCES
               1.       Jena BP. Cell secretion and membrane fusion. Domest Anim Endocrinol 2005;29:145-65.  DOI  PubMed
               2.       Hicke L, Schekman R. Molecular machinery required for protein transport from the endoplasmic reticulum to the Golgi complex.
                    Bioessays 1990;12:253-8.  DOI
               3.       Andreeva AV, Zheng H, Saint-jore CM, Kutuzov MA, Evans DE, Hawes CR. Organization of transport from endoplasmic reticulum
                    to Golgi in higher plants. Biochem Soc T 2000;28:505-12.  DOI  PubMed
               4.       Kim T, Gondré-Lewis MC, Arnaoutova I, Loh YP. Dense-core secretory granule biogenesis. Physiology 2006;21:124-33.  DOI
                    PubMed
               5.       Stalder D, Gershlick DC. Direct trafficking pathways from the Golgi apparatus to the plasma membrane. Semin Cell Dev Biol
                    2020;107:112-25.  DOI  PubMed  PMC
               6.       Kulp A, Kuehn MJ. Biological functions and biogenesis of secreted bacterial outer membrane vesicles. Annu Rev Microbiol
                    2010;64:163-84.  DOI  PubMed  PMC
               7.       Bonifacino JS. Vesicular transport earns a Nobel. Trends Cell Biol 2014;24:3-5.  DOI  PubMed  PMC
               8.       Liu M, Huang Y, Xu X, et al. Normal and defective pathways in biogenesis and maintenance of the insulin storage pool. J Clin Invest
                    2021;131:142240.  DOI  PubMed  PMC
               9.       Wen G, Pang H, Wu X, Jiang E, Zhang X, Zhan X. Proteomic characterization of secretory granules in dopaminergic neurons
                    indicates chromogranin/secretogranin-mediated protein processing impairment in Parkinson's disease. Aging 2021;13:20335-58.  DOI
                    PubMed  PMC
               10.       Chen H, Victor AK, Klein J, et al. Loss of MAGEL2 in Prader-Willi syndrome leads to decreased secretory granule and neuropeptide
                    production. JCI Insight 2020;5:138576.  DOI  PubMed  PMC
               11.       Chung KN, Walter P, Aponte GW, Moore HP. Molecular sorting in the secretory pathway. Science 1989;243:192-7.  DOI  PubMed
               12.       Trueta  C.  An  analytical  method  to  measure  the  contribution  of  clear  synaptic  and  dense-core  peri-synaptic  vesicles  to
                    neurotransmitter release from synaptic terminals with two classes of secretory vesicles. MethodsX 2021;8:101374.  DOI  PubMed
                    PMC
               13.       Edwards RH. Neurotransmitter release: variations on a theme. Curr Biol 1998;8:R883-5.  DOI  PubMed
               14.       Gondré-lewis MC, Park JJ, Loh YP. Cellular mechanisms for the biogenesis and transport of synaptic and dense-core vesicles. Int
                    Rev Cell Mol Biol ;2012:299:27-115.  DOI
               15.       Bartolomucci A, Possenti R, Mahata SK, Fischer-Colbrie R, Loh YP, Salton SR. The extended granin family: structure, function, and
                    biomedical implications. Endocr Rev 2011;32:755-97.  DOI  PubMed  PMC
               16.       Koshimizu H, Kim T, Cawley NX, Loh YP. Chromogranin A: a new proposal for trafficking, processing and induction of granule
                    biogenesis. Regul Pept 2010;160:153-9.  DOI  PubMed  PMC
               17.       Loh YP, Maldonado A, Zhang C, Tam WH, Cawley N. Mechanism of sorting proopiomelanocortin and proenkephalin to the
                    regulated secretory pathway of neuroendocrine cells. Ann N Y Acad Sci 2002;971:416-25.  DOI
               18.       Campelo  F,  Tian  M,  von  Blume  J.  Rediscovering  the  intricacies  of  secretory  granule  biogenesis.  Curr  Opin  Cell  Biol
                    2023;85:102231.  DOI  PubMed
               19.       Arvan P, Castle D. Sorting and storage during secretory granule biogenesis: looking backward and looking forward. Biochem J
                    1998;332:593-610.  DOI  PubMed  PMC
   217   218   219   220   221   222   223   224   225   226   227