Page 223 - Read Online
P. 223
Loh et al. Extracell Vesicles Circ Nucleic Acids 2023;4:568-87 https://dx.doi.org/10.20517/evcna.2023.34 Page 17
20. Tooze SA. Biogenesis of secretory granules in the trans-Golgi network of neuroendocrine and endocrine cells. Biochim Biophys Acta
1998;1404:231-44. DOI PubMed PMC
21. De Bree FM, Van Der Kleij AA, Nijenhuis M, Zalm R, Murphy D, Burbach JP. The hormone domain of the vasopressin prohormone
is required for the correct prohormone trafficking through the secretory pathway. J Neuroendocrinol 2003;15:1156-63. DOI
PubMed
22. Chanat E, Weiss U, Huttner WB, Tooze SA. Reduction of the disulfide bond of chromogranin B (secretogranin I) in the trans-Golgi
network causes its missorting to the constitutive secretory pathways. EMBO J 1993;12:2159-68. DOI PubMed PMC
23. Glombik MM, Krömer A, Salm T, Huttner WB, Gerdes HH. The disulfide-bonded loop of chromogranin B mediates membrane
binding and directs sorting from the trans-Golgi network to secretory granules. EMBO J 1999;18:1059-70. DOI PubMed PMC
24. Guizzetti L, McGirr R, Dhanvantari S. Two dipolar α-helices within hormone-encoding regions of proglucagon are sorting signals to
the regulated secretory pathway. J Biol Chem 2014;289:14968-80. DOI PubMed PMC
25. Blanco EH, Lagos CF, Andrés ME, Gysling K. An amphipathic alpha-helix in the prodomain of cocaine and amphetamine regulated
transcript peptide precursor serves as its sorting signal to the regulated secretory pathway. PLoS One 2013;8:e59695. DOI PubMed
PMC
26. Sun ZP, Gong L, Huang SH, Geng Z, Cheng L, Chen ZY. Intracellular trafficking and secretion of cerebral dopamine neurotrophic
factor in neurosecretory cells. J Neurochem 2011;117:121-32. DOI
27. Cawley NX, Li Z, Loh YP. 60 YEARS OF POMC: biosynthesis, trafficking, and secretion of pro-opiomelanocortin-derived peptides.
J Mol Endocrinol 2016;56:T77-97. DOI PubMed PMC
28. Loh YP, Kim T, Rodriguez YM, Cawley NX. Secretory granule biogenesis and neuropeptide sorting to the regulated secretory
pathway in neuroendocrine cells. J Mol Neurosci 2004;22:63-71. DOI
29. Dhanvantari S, Shen FS, Adams T, et al. Disruption of a receptor-mediated mechanism for intracellular sorting of proinsulin in
familial hyperproinsulinemia. Mol Endocrinol 2003;17:1856-67. DOI
30. Cawley NX, Rathod T, Young S, Lou H, Birch N, Loh YP. Carboxypeptidase E and secretogranin III coordinately facilitate efficient
sorting of proopiomelanocortin to the regulated secretory pathway in AtT20 cells. Mol Endocrinol 2016;30:37-47. DOI PubMed
PMC
31. Zhang CF, Dhanvantari S, Lou H, Loh YP. Sorting of carboxypeptidase E to the regulated secretory pathway requires interaction of
its transmembrane domain with lipid rafts. Biochem J 2003;369:453-60. DOI PubMed PMC
32. Lou H, Kim SK, Zaitsev E, Snell CR, Lu B, Loh YP. Sorting and activity-dependent secretion of BDNF require interaction of a
specific motif with the sorting receptor carboxypeptidase e. Neuron 2005;45:245-55. DOI PubMed
33. Arnaoutova I, Jackson CL, Al-Awar OS, Donaldson JG, Loh YP. Recycling of raft-associated prohormone sorting receptor
carboxypeptidase E requires interaction with ARF6. Mol Biol Cell 2003;14:4448-57. DOI PubMed PMC
34. Cool DR, Normant E, Shen F, et al. Carboxypeptidase E is a regulated secretory pathway sorting receptor: genetic obliteration leads
to endocrine disorders in Cpe(fat) mice. Cell 1997;88:73-83. DOI PubMed
35. Krantz DE, Waites C, Oorschot V, et al. A phosphorylation site regulates sorting of the vesicular acetylcholine transporter to dense
core vesicles. J Cell Biol 2000;149:379-96. DOI PubMed PMC
36. Orci L, Ravazzola M, Amherdt M, et al. The trans-most cisternae of the Golgi complex: a compartment for sorting of secretory and
plasma membrane proteins. Cell 1987;51:1039-51. DOI
37. Courel M, Soler-Jover A, Rodriguez-Flores JL, et al. Pro-hormone secretogranin II regulates dense core secretory granule biogenesis
in catecholaminergic cells. J Biol Chem 2010;285:10030-43. DOI PubMed PMC
38. Freedman SD, Scheele GA. Regulated secretory proteins in the exocrine pancreas aggregate under conditions that mimic the trans-
Golgi network. Biochem Biophys Res Commun 1993;197:992-9. DOI PubMed
39. Hosaka M, Watanabe T, Sakai Y, Kato T, Takeuchi T. Interaction between secretogranin III and carboxypeptidase E facilitates
prohormone sorting within secretory granules. J Cell Sci 2005;118:4785-95. DOI PubMed
40. Kim T, Tao-Cheng JH, Eiden LE, Loh YP. Chromogranin A, an "on/off" switch controlling dense-core secretory granule biogenesis.
Cell 2001;106:499-509. DOI PubMed
41. Kim T, Zhang CF, Sun Z, Wu H, Loh YP. Chromogranin A deficiency in transgenic mice leads to aberrant chromaffin granule
biogenesis. J Neurosci 2005;25:6958-61. DOI PubMed PMC
42. Lutherborrow MA, Appavoo M, Simpson AM, Tuch BE. Gene expression profiling of HUH7-ins: lack of a granulogenic function for
chromogranin A. Islets 2009;1:62-74. DOI PubMed
43. Obermüller S, Calegari F, King A, et al. Defective secretion of islet hormones in chromogranin-B deficient mice. PLoS One
2010;5:e8936. DOI PubMed PMC
44. Borgonovo B, Ouwendijk J, Solimena M. Biogenesis of secretory granules. Curr Opin Cell Biol 2006;18:365-70. DOI PubMed
45. Day R, Gorr SU. Secretory granule biogenesis and chromogranin A: master gene, on/off switch or assembly factor? Trends
Endocrinol Metab 2003;14:10-3. DOI PubMed
46. Du W, Zhou M, Zhao W, et al. HID-1 is required for homotypic fusion of immature secretory granules during maturation. Elife
2016;5:e18134. DOI PubMed PMC
47. Yu Y, Wang L, Jiu Y, et al. HID-1 is a novel player in the regulation of neuropeptide sorting. Biochem J 2011;434:383-90. DOI
48. Mesa R, Luo S, Hoover CM, et al. HID-1, a new component of the peptidergic signaling pathway. Genetics 2011;187:467-83. DOI
PubMed PMC

