Page 223 - Read Online
P. 223

Loh et al. Extracell Vesicles Circ Nucleic Acids 2023;4:568-87  https://dx.doi.org/10.20517/evcna.2023.34  Page 17

               20.       Tooze SA. Biogenesis of secretory granules in the trans-Golgi network of neuroendocrine and endocrine cells. Biochim Biophys Acta
                    1998;1404:231-44.  DOI  PubMed  PMC
               21.       De Bree FM, Van Der Kleij AA, Nijenhuis M, Zalm R, Murphy D, Burbach JP. The hormone domain of the vasopressin prohormone
                    is required for the correct prohormone trafficking through the secretory pathway. J Neuroendocrinol 2003;15:1156-63.  DOI
                    PubMed
               22.       Chanat E, Weiss U, Huttner WB, Tooze SA. Reduction of the disulfide bond of chromogranin B (secretogranin I) in the trans-Golgi
                    network causes its missorting to the constitutive secretory pathways. EMBO J 1993;12:2159-68.  DOI  PubMed  PMC
               23.       Glombik MM, Krömer A, Salm T, Huttner WB, Gerdes HH. The disulfide-bonded loop of chromogranin B mediates membrane
                    binding and directs sorting from the trans-Golgi network to secretory granules. EMBO J 1999;18:1059-70.  DOI  PubMed  PMC
               24.       Guizzetti L, McGirr R, Dhanvantari S. Two dipolar α-helices within hormone-encoding regions of proglucagon are sorting signals to
                    the regulated secretory pathway. J Biol Chem 2014;289:14968-80.  DOI  PubMed  PMC
               25.       Blanco EH, Lagos CF, Andrés ME, Gysling K. An amphipathic alpha-helix in the prodomain of cocaine and amphetamine regulated
                    transcript peptide precursor serves as its sorting signal to the regulated secretory pathway. PLoS One 2013;8:e59695.  DOI  PubMed
                    PMC
               26.       Sun ZP, Gong L, Huang SH, Geng Z, Cheng L, Chen ZY. Intracellular trafficking and secretion of cerebral dopamine neurotrophic
                    factor in neurosecretory cells. J Neurochem 2011;117:121-32.  DOI
               27.       Cawley NX, Li Z, Loh YP. 60 YEARS OF POMC: biosynthesis, trafficking, and secretion of pro-opiomelanocortin-derived peptides.
                    J Mol Endocrinol 2016;56:T77-97.  DOI  PubMed  PMC
               28.       Loh YP, Kim T, Rodriguez YM, Cawley NX. Secretory granule biogenesis and neuropeptide sorting to the regulated secretory
                    pathway in neuroendocrine cells. J Mol Neurosci 2004;22:63-71.  DOI
               29.       Dhanvantari S, Shen FS, Adams T, et al. Disruption of a receptor-mediated mechanism for intracellular sorting of proinsulin in
                    familial hyperproinsulinemia. Mol Endocrinol 2003;17:1856-67.  DOI
               30.       Cawley NX, Rathod T, Young S, Lou H, Birch N, Loh YP. Carboxypeptidase E and secretogranin III coordinately facilitate efficient
                    sorting of proopiomelanocortin to the regulated secretory pathway in AtT20 cells. Mol Endocrinol 2016;30:37-47.  DOI  PubMed
                    PMC
               31.       Zhang CF, Dhanvantari S, Lou H, Loh YP. Sorting of carboxypeptidase E to the regulated secretory pathway requires interaction of
                    its transmembrane domain with lipid rafts. Biochem J 2003;369:453-60.  DOI  PubMed  PMC
               32.       Lou H, Kim SK, Zaitsev E, Snell CR, Lu B, Loh YP. Sorting and activity-dependent secretion of BDNF require interaction of a
                    specific motif with the sorting receptor carboxypeptidase e. Neuron 2005;45:245-55.  DOI  PubMed
               33.       Arnaoutova I, Jackson CL, Al-Awar OS, Donaldson JG, Loh YP. Recycling of raft-associated prohormone sorting receptor
                    carboxypeptidase E requires interaction with ARF6. Mol Biol Cell 2003;14:4448-57.  DOI  PubMed  PMC
               34.       Cool DR, Normant E, Shen F, et al. Carboxypeptidase E is a regulated secretory pathway sorting receptor: genetic obliteration leads
                    to endocrine disorders in Cpe(fat) mice. Cell 1997;88:73-83.  DOI  PubMed
               35.       Krantz DE, Waites C, Oorschot V, et al. A phosphorylation site regulates sorting of the vesicular acetylcholine transporter to dense
                    core vesicles. J Cell Biol 2000;149:379-96.  DOI  PubMed  PMC
               36.       Orci L, Ravazzola M, Amherdt M, et al. The trans-most cisternae of the Golgi complex: a compartment for sorting of secretory and
                    plasma membrane proteins. Cell 1987;51:1039-51.  DOI
               37.       Courel M, Soler-Jover A, Rodriguez-Flores JL, et al. Pro-hormone secretogranin II regulates dense core secretory granule biogenesis
                    in catecholaminergic cells. J Biol Chem 2010;285:10030-43.  DOI  PubMed  PMC
               38.       Freedman SD, Scheele GA. Regulated secretory proteins in the exocrine pancreas aggregate under conditions that mimic the trans-
                    Golgi network. Biochem Biophys Res Commun 1993;197:992-9.  DOI  PubMed
               39.       Hosaka M, Watanabe T, Sakai Y, Kato T, Takeuchi T. Interaction between secretogranin III and carboxypeptidase E facilitates
                    prohormone sorting within secretory granules. J Cell Sci 2005;118:4785-95.  DOI  PubMed
               40.       Kim T, Tao-Cheng JH, Eiden LE, Loh YP. Chromogranin A, an "on/off" switch controlling dense-core secretory granule biogenesis.
                    Cell 2001;106:499-509.  DOI  PubMed
               41.       Kim T, Zhang CF, Sun Z, Wu H, Loh YP. Chromogranin A deficiency in transgenic mice leads to aberrant chromaffin granule
                    biogenesis. J Neurosci 2005;25:6958-61.  DOI  PubMed  PMC
               42.       Lutherborrow MA, Appavoo M, Simpson AM, Tuch BE. Gene expression profiling of HUH7-ins: lack of a granulogenic function for
                    chromogranin A. Islets 2009;1:62-74.  DOI  PubMed
               43.       Obermüller S, Calegari F, King A, et al. Defective secretion of islet hormones in chromogranin-B deficient mice. PLoS One
                    2010;5:e8936.  DOI  PubMed  PMC
               44.       Borgonovo B, Ouwendijk J, Solimena M. Biogenesis of secretory granules. Curr Opin Cell Biol 2006;18:365-70.  DOI  PubMed
               45.       Day R, Gorr SU. Secretory granule biogenesis and chromogranin A: master gene, on/off switch or assembly factor? Trends
                    Endocrinol Metab 2003;14:10-3.  DOI  PubMed
               46.       Du W, Zhou M, Zhao W, et al. HID-1 is required for homotypic fusion of immature secretory granules during maturation. Elife
                    2016;5:e18134.  DOI  PubMed  PMC
               47.       Yu Y, Wang L, Jiu Y, et al. HID-1 is a novel player in the regulation of neuropeptide sorting. Biochem J 2011;434:383-90.  DOI
               48.       Mesa R, Luo S, Hoover CM, et al. HID-1, a new component of the peptidergic signaling pathway. Genetics 2011;187:467-83.  DOI
                    PubMed  PMC
   218   219   220   221   222   223   224   225   226   227   228