Page 224 - Read Online
P. 224

Page 18                 Loh et al. Extracell Vesicles Circ Nucleic Acids 2023;4:568-87  https://dx.doi.org/10.20517/evcna.2023.34

               49.       Hummer BH, de Leeuw NF, Burns C, et al. HID-1 controls formation of large dense core vesicles by influencing cargo sorting and
                    trans-Golgi network acidification. Mol Biol Cell 2017;28:3870-80.  DOI  PubMed  PMC
               50.       Bonnemaison M, Bäck N, Lin Y, Bonifacino JS, Mains R, Eipper B. AP-1A controls secretory granule biogenesis and trafficking of
                    membrane secretory granule proteins. Traffic 2014;15:1099-121.  DOI  PubMed  PMC
               51.       Emperador-Melero J, Huson V, van Weering J, et al. Vti1a/b regulate synaptic vesicle and dense core vesicle secretion via protein
                    sorting at the Golgi. Nat Commun 2018;9:3421.  DOI  PubMed  PMC
               52.       Walter AM, Kurps J, de Wit H, et al. The SNARE protein vti1a functions in dense-core vesicle biogenesis. EMBO J 2014;33:1681-
                    97.  DOI  PubMed  PMC
               53.       Keimpema L, Kooistra R, Toonen RF, Verhage M. CAPS-1 requires its C2, PH, MHD1 and DCV domains for dense core vesicle
                    exocytosis in mammalian CNS neurons. Sci Rep 2017;7:10817.  DOI  PubMed  PMC
               54.       Farina M, van de Bospoort R, He E, et al. CAPS-1 promotes fusion competence of stationary dense-core vesicles in presynaptic
                    terminals of mammalian neurons. Elife 2015;4:e05438.  DOI  PubMed  PMC
               55.       Sadakata T, Shinoda Y, Sekine Y, et al. Interaction of calcium-dependent activator protein for secretion 1 (CAPS1) with the class II
                    ADP-ribosylation factor small GTPases is required for dense-core vesicle trafficking in the trans-Golgi network. J Biol Chem
                    2010;285:38710-9.  DOI  PubMed  PMC
               56.       Sadakata T, Kakegawa W, Shinoda Y, et al. CAPS1 deficiency perturbs dense-core vesicle trafficking and Golgi structure and
                    reduces presynaptic release probability in the mouse brain. J Neurosci 2013;33:17326-34.  DOI  PubMed  PMC
               57.       Harashima S, Horiuchi T, Wang Y, Notkins AL, Seino Y, Inagaki N. Sorting nexin 19 regulates the number of dense core vesicles in
                    pancreatic β-cells. J Diabetes Investig 2012;3:52-61.  DOI  PubMed  PMC
               58.       Buffa L, Fuchs E, Pietropaolo M, Barr F, Solimena M. ICA69 is a novel Rab2 effector regulating ER-Golgi trafficking in insulinoma
                    cells. Eur J Cell Biol 2008;87:197-209.  DOI  PubMed
               59.       Cao M, Mao Z, Kam C, et al. PICK1 and ICA69 control insulin granule trafficking and their deficiencies lead to impaired glucose
                    tolerance. PLoS Biol 2013;11:e1001541.  DOI  PubMed  PMC
               60.       Edwards  SL,  Charlie  NK,  Richmond  JE,  Hegermann  J,  Eimer  S,  Miller  KG.  Impaired  dense  core  vesicle  maturation  in
                    Caenorhabditis elegans mutants lacking Rab2. J Cell Biol 2009;186:881-95.  DOI  PubMed  PMC
               61.       Hannemann M, Sasidharan N, Hegermann J, Kutscher LM, Koenig S, Eimer S. TBC-8, a putative RAB-2 GAP, regulates dense core
                    vesicle maturation in Caenorhabditis elegans. PLoS Genet 2012;8:e1002722.  DOI  PubMed  PMC
               62.       Holst B, Madsen KL, Jansen AM, et al. PICK1 deficiency impairs secretory vesicle biogenesis and leads to growth retardation and
                    decreased glucose tolerance. PLoS Biol 2013;11:e1001542.  DOI  PubMed  PMC
               63.       Trogden KP, Zhu X, Lee JS, Wright CVE, Gu G, Kaverina I. Regulation of glucose-dependent golgi-derived microtubules by cAMP/
                    EPAC2 promotes secretory vesicle biogenesis in pancreatic β Cells. Curr Biol 2019;29:2339-2350.e5.  DOI  PubMed  PMC
               64.       Tooze SA, Flatmark T, Tooze J, Huttner WB. Characterization of the immature secretory granule, an intermediate in granule
                    biogenesis. J Cell Biol 1991;115:1491-503.  DOI  PubMed  PMC
               65.       Mulcahy LR, Barker AJ, Nillni EA. Disruption of disulfide bond formation alters the trafficking of prothyrotropin releasing hormone
                    (proTRH)-derived peptides. Regul Pept 2006;133:123-33.  DOI  PubMed
               66.       Kuliawat R, Klumperman J, Ludwig T, Arvan P. Differential sorting of lysosomal enzymes out of the regulated secretory pathway in
                    pancreatic beta-cells. J Cell Biol 1997;137:595-608.  DOI  PubMed  PMC
               67.       Tooze SA, Huttner WB. Cell-free protein sorting to the regulated and constitutive secretory pathways. Cell 1990;60:837-47.  DOI
                    PubMed  PMC
               68.       Dittie AS, Hajibagheri N, Tooze SA. The AP-1 adaptor complex binds to immature secretory granules from PC12 cells, and is
                    regulated by ADP-ribosylation factor. J Cell Biol 1996;132:523-36.  DOI  PubMed  PMC
               69.       Chanturiya A, Chernomordik LV, Zimmerberg J. Flickering fusion pores comparable with initial exocytotic pores occur in protein-
                    free phospholipid bilayers. Proc Natl Acad Sci U S A 1997;94:14423-8.  DOI  PubMed  PMC
               70.       Dittié AS, Klumperman J, Tooze SA. Differential distribution of mannose-6-phosphate receptors and furin in immature secretory
                    granules. J Cell Sci 1999;112:3955-66.  DOI  PubMed
               71.       Kakhlon O, Sakya P, Larijani B, Watson R, Tooze SA. GGA function is required for maturation of neuroendocrine secretory
                    granules. EMBO J 2006;25:1590-602.  DOI  PubMed  PMC
               72.       Crummy E, Mani M, Thellman JC, Martin TFJ. The priming factor CAPS1 regulates dense-core vesicle acidification by interacting
                    with rabconnectin3β/WDR7 in neuroendocrine cells. J Biol Chem 2019;294:9402-15.  DOI  PubMed  PMC
               73.       Ma CJ, Yang Y, Kim T, et al. An early endosome-derived retrograde trafficking pathway promotes secretory granule maturation. J
                    Cell Biol 2020;219:e201808017.  DOI  PubMed  PMC
               74.       Lim A, Rechtsteiner A, Saxton WM. Two kinesins drive anterograde neuropeptide transport. Mol Biol Cell 2017;28:3542-53.  DOI
                    PubMed  PMC
               75.       Barkus RV, Klyachko O, Horiuchi D, Dickson BJ, Saxton WM. Identification of an axonal kinesin-3 motor for fast anterograde
                    vesicle transport that facilitates retrograde transport of neuropeptides. Mol Biol Cell 2008;19:274-83.  DOI  PubMed  PMC
               76.       Zahn TR, Angleson JK, MacMorris MA, et al. Dense core vesicle dynamics in Caenorhabditis elegans neurons and the role of kinesin
                    UNC-104. Traffic 2004;5:544-59.  DOI  PubMed
               77.       Lo KY, Kuzmin A, Unger SM, Petersen JD, Silverman MA. KIF1A is the primary anterograde motor protein required for the axonal
                    transport of dense-core vesicles in cultured hippocampal neurons. Neurosci Lett 2011;491:168-73.  DOI  PubMed
   219   220   221   222   223   224   225   226   227   228   229