Page 152 - Read Online
P. 152
Page 18 Cai et al. Extracell Vesicles Circ Nucleic Acids 2023;4:262-82 https://dx.doi.org/10.20517/evcna.2023.10
nanotherapeutics medicine of extracellular vesicles. Int J Nanomedicine 2021;16:3357-83. DOI PubMed PMC
63. Baldrich P, Rutter BD, Karimi HZ, Podicheti R, Meyers BC, Innes RW. Plant extracellular vesicles contain diverse small RNA
species and are enriched in 10- to 17-nucleotide "tiny" RNAs. Plant Cell 2019;31:315-24. DOI PubMed PMC
64. Jeon HS, Jang E, Kim J, et al. Pathogen-induced autophagy regulates monolignol transport and lignin formation in plant immunity.
Autophagy 2023;19:597-615. DOI PubMed PMC
65. Doyle LM, Wang MZ. Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and
analysis. Cells 2019;8:727. DOI PubMed PMC
66. Trajkovic K, Hsu C, Chiantia S, et al. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science
2008;319:1244-7. DOI
67. Liu NJ, Wang N, Bao JJ, Zhu HX, Wang LJ, Chen XY. Lipidomic analysis reveals the importance of GIPCs in arabidopsis leaf
extracellular vesicles. Mol Plant 2020;13:1523-32. DOI PubMed
68. Gronnier J, Germain V, Gouguet P, Cacas JL, Mongrand S. GIPC: glycosyl inositol phospho ceramides, the major sphingolipids on
earth. Plant Signal Behav 2016;11:e1152438. DOI PubMed PMC
69. Kwon C, Neu C, Pajonk S, et al. Co-option of a default secretory pathway for plant immune responses. Nature 2008;451:835-40.
DOI
70. Ding Y, Wang J, Chun Lai JH, et al. Exo70E2 is essential for exocyst subunit recruitment and EXPO formation in both plants and
animals. Mol Biol Cell 2014;25:412-26. DOI PubMed PMC
71. Wang J, Ding Y, Wang J, et al. EXPO, an exocyst-positive organelle distinct from multivesicular endosomes and autophagosomes,
mediates cytosol to cell wall exocytosis in Arabidopsis and tobacco cells. Plant Cell 2010;22:4009-30. DOI PubMed PMC
72. Kameli N, Dragojlovic-Kerkache A, Savelkoul P, Stassen FR. Plant-derived extracellular vesicles: current findings, challenges, and
future applications. Membranes 2021;11:411. DOI PubMed PMC
73. Zhang HG, Cao P, Teng Y, et al. Isolation, identification, and characterization of novel nanovesicles. Oncotarget 2016;7:41346-62.
DOI PubMed PMC
74. Wang QL, Zhuang XY, Mu JY, et al. Delivery of therapeutic agents by nanoparticles made of grapefruit-derived lipids. Nat Commun
2013;4:1867. DOI PubMed PMC
75. Teng Y, Ren Y, Sayed M, et al. Plant-derived exosomal microRNAs shape the gut microbiota. Cell Host Microbe 2018;24:637-52.
DOI PubMed PMC
76. Liu Y, Wu S, Koo Y, et al. Characterization of and isolation methods for plant leaf nanovesicles and small extracellular vesicles.
Nanomedicine 2020;29:102271. DOI
77. Tan ZL, Li JF, Luo HM, Liu YY, Jin Y. Plant extracellular vesicles: a novel bioactive nanoparticle for tumor therapy. Front
Pharmacol 2022;13:1006299. DOI PubMed PMC
78. Karamanidou T, Tsouknidas A. Plant-derived extracellular vesicles as therapeutic nanocarriers. Int J Mol Sci 2022;23:191. DOI
PubMed PMC
79. Zand Karimi H, Baldrich P, Rutter BD, et al. Arabidopsis apoplastic fluid contains sRNA- and circular RNA-protein complexes that
are located outside extracellular vesicles. Plant Cell 2022;34:1863-81. DOI PubMed PMC
80. Chen A, He B, Jin H. Isolation of extracellular vesicles from arabidopsis. Curr Protoc 2022;2:e352. DOI PubMed PMC
81. Wubbolts R, Leckie RS, Veenhuizen PT, et al. Proteomic and biochemical analyses of human B cell-derived exosomes. potential
implications for their function and multivesicular body formation. J Biol Chem 2003;278:10963-72. DOI
82. Jeppesen DK, Fenix AM, Franklin JL, et al. Reassessment of exosome composition. Cell 2019;177:428-445.e18. DOI PubMed
PMC
83. Cocucci E, Meldolesi J. Ectosomes and exosomes: shedding the confusion between extracellular vesicles. Trends Cell Biol
2015;25:364-72. DOI PubMed
84. Kim YB, Lee GB, Moon MH. Size separation of exosomes and microvesicles using flow field-flow fractionation/multiangle light
scattering and lipidomic comparison. Anal Chem 2022;94:8958-65. DOI PubMed
85. Katiyar-Agarwal S, Jin H. Role of small RNAs in host-microbe interactions. Annu Rev Phytopathol 2010;48:225-46. DOI PubMed
PMC
86. Lopez-Gomollon S, Baulcombe DC. Roles of RNA silencing in viral and non-viral plant immunity and in the crosstalk between
disease resistance systems. Nat Rev Mol Cell Biol 2022;23:645-62. DOI PubMed
87. Rosa C, Kuo YW, Wuriyanghan H, Falk BW. RNA interference mechanisms and applications in plant pathology. Annu Rev
Phytopathol 2018;56:581-610. DOI
88. Wang M, Weiberg A, Lin FM, Thomma BP, Huang HD, Jin H. Bidirectional cross-kingdom RNAi and fungal uptake of external
RNAs confer plant protection. Nat Plants 2016;2:16151. DOI PubMed PMC
89. Weiberg A, Wang M, Bellinger M, Jin H. Small RNAs: a new paradigm in plant-microbe interactions. Annu Rev Phytopathol
2014;52:495-516. DOI PubMed
90. Chen X, Rechavi O. Plant and animal small RNA communications between cells and organisms. Nat Rev Mol Cell Biol 2022;23:185-
203. DOI PubMed PMC
91. Weiberg A, Wang M, Lin FM, et al. Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways.
Science 2013;342:118-23. DOI PubMed PMC
92. He B, Cai Q, Weiberg A, et al. Botrytis cinerea small RNAs are associated with tomato AGO1 and silence tomato defense-related

