Page 152 - Read Online
P. 152

Page 18                  Cai et al. Extracell Vesicles Circ Nucleic Acids 2023;4:262-82  https://dx.doi.org/10.20517/evcna.2023.10

                    nanotherapeutics medicine of extracellular vesicles. Int J Nanomedicine 2021;16:3357-83.  DOI  PubMed  PMC
               63.       Baldrich P, Rutter BD, Karimi HZ, Podicheti R, Meyers BC, Innes RW. Plant extracellular vesicles contain diverse small RNA
                    species and are enriched in 10- to 17-nucleotide "tiny" RNAs. Plant Cell 2019;31:315-24.  DOI  PubMed  PMC
               64.       Jeon HS, Jang E, Kim J, et al. Pathogen-induced autophagy regulates monolignol transport and lignin formation in plant immunity.
                    Autophagy 2023;19:597-615.  DOI  PubMed  PMC
               65.       Doyle LM, Wang MZ. Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and
                    analysis. Cells 2019;8:727.  DOI  PubMed  PMC
               66.       Trajkovic K, Hsu C, Chiantia S, et al. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science
                    2008;319:1244-7.  DOI
               67.       Liu NJ, Wang N, Bao JJ, Zhu HX, Wang LJ, Chen XY. Lipidomic analysis reveals the importance of GIPCs in arabidopsis leaf
                    extracellular vesicles. Mol Plant 2020;13:1523-32.  DOI  PubMed
               68.       Gronnier J, Germain V, Gouguet P, Cacas JL, Mongrand S. GIPC: glycosyl inositol phospho ceramides, the major sphingolipids on
                    earth. Plant Signal Behav 2016;11:e1152438.  DOI  PubMed  PMC
               69.       Kwon C, Neu C, Pajonk S, et al. Co-option of a default secretory pathway for plant immune responses. Nature 2008;451:835-40.
                    DOI
               70.       Ding Y, Wang J, Chun Lai JH, et al. Exo70E2 is essential for exocyst subunit recruitment and EXPO formation in both plants and
                    animals. Mol Biol Cell 2014;25:412-26.  DOI  PubMed  PMC
               71.       Wang J, Ding Y, Wang J, et al. EXPO, an exocyst-positive organelle distinct from multivesicular endosomes and autophagosomes,
                    mediates cytosol to cell wall exocytosis in Arabidopsis and tobacco cells. Plant Cell 2010;22:4009-30.  DOI  PubMed  PMC
               72.       Kameli N, Dragojlovic-Kerkache A, Savelkoul P, Stassen FR. Plant-derived extracellular vesicles: current findings, challenges, and
                    future applications. Membranes 2021;11:411.  DOI  PubMed  PMC
               73.       Zhang HG, Cao P, Teng Y, et al. Isolation, identification, and characterization of novel nanovesicles. Oncotarget 2016;7:41346-62.
                    DOI  PubMed  PMC
               74.       Wang QL, Zhuang XY, Mu JY, et al. Delivery of therapeutic agents by nanoparticles made of grapefruit-derived lipids. Nat Commun
                    2013;4:1867.  DOI  PubMed  PMC
               75.       Teng Y, Ren Y, Sayed M, et al. Plant-derived exosomal microRNAs shape the gut microbiota. Cell Host Microbe 2018;24:637-52.
                    DOI  PubMed  PMC
               76.       Liu Y, Wu S, Koo Y, et al. Characterization of and isolation methods for plant leaf nanovesicles and small extracellular vesicles.
                    Nanomedicine 2020;29:102271.  DOI
               77.       Tan ZL, Li JF, Luo HM, Liu YY, Jin Y. Plant extracellular vesicles: a novel bioactive nanoparticle for tumor therapy. Front
                    Pharmacol 2022;13:1006299.  DOI  PubMed  PMC
               78.       Karamanidou T, Tsouknidas A. Plant-derived extracellular vesicles as therapeutic nanocarriers. Int J Mol Sci 2022;23:191.  DOI
                    PubMed  PMC
               79.       Zand Karimi H, Baldrich P, Rutter BD, et al. Arabidopsis apoplastic fluid contains sRNA- and circular RNA-protein complexes that
                    are located outside extracellular vesicles. Plant Cell 2022;34:1863-81.  DOI  PubMed  PMC
               80.       Chen A, He B, Jin H. Isolation of extracellular vesicles from arabidopsis. Curr Protoc 2022;2:e352.  DOI  PubMed  PMC
               81.       Wubbolts R, Leckie RS, Veenhuizen PT, et al. Proteomic and biochemical analyses of human B cell-derived exosomes. potential
                    implications for their function and multivesicular body formation. J Biol Chem 2003;278:10963-72.  DOI
               82.       Jeppesen DK, Fenix AM, Franklin JL, et al. Reassessment of exosome composition. Cell 2019;177:428-445.e18.  DOI  PubMed
                    PMC
               83.       Cocucci E, Meldolesi J. Ectosomes and exosomes: shedding the confusion between extracellular vesicles. Trends Cell Biol
                    2015;25:364-72.  DOI  PubMed
               84.       Kim YB, Lee GB, Moon MH. Size separation of exosomes and microvesicles using flow field-flow fractionation/multiangle light
                    scattering and lipidomic comparison. Anal Chem 2022;94:8958-65.  DOI  PubMed
               85.       Katiyar-Agarwal S, Jin H. Role of small RNAs in host-microbe interactions. Annu Rev Phytopathol 2010;48:225-46.  DOI  PubMed
                    PMC
               86.       Lopez-Gomollon S, Baulcombe DC. Roles of RNA silencing in viral and non-viral plant immunity and in the crosstalk between
                    disease resistance systems. Nat Rev Mol Cell Biol 2022;23:645-62.  DOI  PubMed
               87.       Rosa C, Kuo YW, Wuriyanghan H, Falk BW. RNA interference mechanisms and applications in plant pathology. Annu Rev
                    Phytopathol 2018;56:581-610.  DOI
               88.       Wang M, Weiberg A, Lin FM, Thomma BP, Huang HD, Jin H. Bidirectional cross-kingdom RNAi and fungal uptake of external
                    RNAs confer plant protection. Nat Plants 2016;2:16151.  DOI  PubMed  PMC
               89.       Weiberg A, Wang M, Bellinger M, Jin H. Small RNAs: a new paradigm in plant-microbe interactions. Annu Rev Phytopathol
                    2014;52:495-516.  DOI  PubMed
               90.       Chen X, Rechavi O. Plant and animal small RNA communications between cells and organisms. Nat Rev Mol Cell Biol 2022;23:185-
                    203.  DOI  PubMed  PMC
               91.       Weiberg A, Wang M, Lin FM, et al. Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways.
                    Science 2013;342:118-23.  DOI  PubMed  PMC
               92.      He B, Cai Q, Weiberg A, et al. Botrytis cinerea small RNAs are associated with tomato AGO1 and silence tomato defense-related
   147   148   149   150   151   152   153   154   155   156   157